解析:马与白马

#include "stdafx.h"

class A   // 马
{
    int a;
};

class B: public A  // 白马
{
    int b;
};

class C:public B  // 亚洲白马
{
};


void T1()  // 父类子类对象,彼此之间的赋值
{
    A a;
    B b;
    a = b;
    // b = a; // err!
}
void T2()  // 父类子类对象指针,彼此之间的赋值
{
    A *pa=new A;
    B *pb=new B;
    pa = pb;  // 白马是马
    //pb = pa;  // 马非白马
}

int main(int argc, char* argv[])
{

    return 0;
}

这段代码是C++的继承示例代码,主要演示了父类和子类对象之间的赋值问题。

首先定义了三个类:A、B和C。类A表示马,类B表示白马,类C表示亚洲白马。类B是类A的子类,类C是类B的子类。

在函数T1中,创建了一个A类对象a和一个B类对象b,并进行了a = b的赋值操作。这是合法的,因为B类是A类的子类,可以将子类对象赋值给父类对象。

在函数T2中,创建了两个指向A类和B类对象的指针pa和pb,并进行了pa = pb的赋值操作。这也是合法的,因为B类是A类的子类,可以将子类指针赋值给父类指针。

但是在这个示例中,尝试将pa赋值给pb是不合法的,因为A类对象不能直接赋值给B类对象。

在这个程序中,我们可以通过多态来实现不同动物的叫声。首先,我们需要创建一个Animal类作为父类,该类包含一个make_sound方法用于输出叫声。然后,我们创建不同的子类,比如DogCat,它们都继承自Animal类,并且重写了make_sound方法分别输出狗叫和猫叫的声音。

接下来,我们可以创建一个数组或者列表来存储不同的动物对象。然后,我们可以使用多态性质,通过调用make_sound方法来输出各个动物的叫声,而不需要知道具体的对象类型。

下面是一个示例程序:

class Animal:
    def make_sound(self):
        pass

class Dog(Animal):
    def make_sound(self):
        print("汪汪汪!")

class Cat(Animal):
    def make_sound(self):
        print("喵喵喵!")

def main():
    animals = [Dog(), Cat()]
    for animal in animals:
        animal.make_sound()

if __name__ == "__main__":
    main()

在这个示例程序中,我们创建了AnimalDogCat三个类。DogCat类都继承自Animal类,并且重写了make_sound方法。

main函数中,我们创建了一个包含了一个Dog和一个Cat对象的动物列表。然后,我们使用循环遍历列表中的每个对象,并调用其make_sound方法来输出各个动物的叫声。

通过多态机制,即使我们不知道具体的对象类型,我们仍然可以正确地调用相应对象的方法。这就是多态的应用。

#include "stdafx.h"

class A   // 马
{
    int a;
public:
    A(){}
    virtual ~A(){ cout<<"~A()"<<endl; }
};

class B1: public A  // 白马
{
    int b1;
public:
    B1(){}
    virtual ~B1(){ cout<<"~B1()"<<endl; }
};

class B2: public A  // 黑马
{
    int b2;
public:
    B2(){}
    virtual ~B2(){ cout<<"~B2()"<<endl; }
};

void T3() 
{
    A  *ps[3];
    ps[0] =new A;
    ps[1] =new B1;
    ps[2] =new B2;
    for(int i=0; i<3; i++)
        delete ps[i];  // 多态的效果
}

int main(int argc, char* argv[])
{
    T3();
    return 0;
}

在这个代码段中,定义了三个类A、B1和B2。类A代表马,类B1和B2分别代表白马和黑马。类A有一个成员变量a,类B1有一个成员变量b1,类B2有一个成员变量b2。这些类都有一个默认构造函数和一个虚析构函数。

在主函数中,定义了一个长度为3的A指针数组ps。然后通过new关键字创建了一个A对象、一个B1对象和一个B2对象,并将它们分别赋值给ps数组中的三个元素。接下来,通过一个for循环,依次释放ps数组中的三个元素的内存,实现了多态的效果。

在释放过程中,由于A类的析构函数是虚函数,所以在释放派生类对象时,会先调用派生类的析构函数,再调用基类的析构函数。所以在释放B1对象时,会先调用B1类的析构函数,再调用A类的析构函数;在释放B2对象时,会先调用B2类的析构函数,再调用A类的析构函数。最后释放A对象时,只会调用A类的析构函数。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值