【优化算法】遗传算法及加速遗传算法(超详细更新中)

一·遗传算法基本概念

Genetic Algorithm, GA:起源于对生物系统进行的计算机模拟研究。最早是由美国密歇根大学Holland教授及其学生于20世纪60年代末到70年代初提出。是借鉴孟德尔遗传学说模仿生物进化发展起来的随机全局搜索和优化方法。本质是高效,并行,全局搜索的方法。遗传算法使用群体搜索技术,将种群代表一组问题解,通过对当前种群施加选择、交叉、变异等一系列遗传操作来产生新一代的种群,并逐步使种群进化到包含近似最优解的状态。遗传算法 - 维基百科,自由的百科全书 (wikipedia.org)

二·名词引入

1.个体和种群

个体是指染色体具有特征的实体,表示可行解。
种群是个体的集合,表示可行解集。该集合内个体数成为种群的大小。初始解集生成方法最常见的是随机生成;特定问题中可以使用启发式算法(如贪心算法、局部搜索等)生成一个或多个较好的初始解。这可以帮助算法在较优区域开始搜索,从而加快收敛速度;也可先前信息或结果根据经验构造初始解集;针对某些特定领域的问题,可以设计特定的规则或结构来生成初始解。例如,在调度问题中,可能基于任务的优先级生成一定结构的解。

2.染色体和基因

基因是控制生物体即遗传信息的基本单位,表示可行解的编码。一条染色体可以表示为二进制串,其中每一位代表一个基因。

3.遗传编码

 遗传编码是将优化变量转化为基因的组合表示形式,优化变量的编码机制有二进制编码、十进制编码(实数编码)等。

编码(coding) DNA中遗传信息在一个长链上按一定的模式排列,遗传编码可看作从表现型到基因型的映射。
解码(decoding) 基因型到表现型的映射。

4.适应度

  适应度即生物体个体适应生存环境的能力。在遗传算法中,用来评价解的优劣程度的数学函数,称为个体的适应度函数。对于求解最大值的优化问题,某解的适应度函数值越大,即表示该解越适应函数。

5.遗传操作

遗传算法通过选择,交叉,突变行为来从亲代解产生子代解,并通过这些过程将亲代的信息遗传给子代。

选择 用来确定哪些个体用于繁殖并产生下一代,适应度高更有可能被选中,适应度低也不至于完全摒弃其遗传物质,避免陷入局部最优
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值