优化算法之遗传算法

本文介绍了遗传算法的基本原理,包括其模拟生物进化的过程,适用于解决NP问题、非线性优化等。遗传操作包括选择、交叉和变异,通过这些机制逐步优化种群找到接近最优解。此外,还探讨了遗传算法的特点,如自组织、自适应和自学习性,并提供了Matlab仿真实例来求解函数最大值问题。
摘要由CSDN通过智能技术生成

前几天,在听了学长关于遗传优化算法应用在考虑TMD作用的地震分析之后,感觉到优化算法一系列的优化算法的强大之处。回来也趁热打铁查了一下资料,大致理解一下遗传算法的机理。下面就记录分享一下吧。

一、遗传算法简介

顾名思义,遗传算法是模拟生物在自然环境下的遗传和进化过程的一种自适应的全局优化搜索算法,通过借助遗传学的原理,经过自然选择、遗传、变异等作用机制进而筛选出具有适应性更高的个体(适者生存)。遗传算法从20世纪七八十年代的诞生到现在主要集中的适用范围为NP问题(指存在多项式算法能够解决的非决定性问题)、非线性、多峰函数优化和多目标优化问题等等。同时在机器学习、模式识别和神经网络及社会科学中的应用也显得非常出色。

二、遗传算法的算法理论

2.1遗传算法基本概念与术语:

遗传算法的概念简单来说,就是利用种群搜索技术将种群作为一组问题解通过对当前种群施加类似生物遗传环境因素的选择、交叉、变异等一系列的遗传操作来产生新一代的种群,并逐步使种群优化到包含近似最优解的状态。

术语:

遗传算法基本术语
遗传学术语 遗传算法术语
种群 可行解集
个体 可行解
染色体 可行解的编码
基因 可行解编码的分量
基因形式 遗传编码
适应度 评价的函数值(适应度函数)
选择 选择操作
交叉 编码的交叉操作
变异 可行解编码的变异
注意: 这里的个体与染色体的关系,我个人进行一下解释。我可以把个体当做是染色体的组合。 换句话说呢,就是染色体决定了个体,染色体上基因的操作(选择、交叉、变异)直接作用于个体的形态。所以呢,我们必须是基于对染色体、基因进行遗传学的操作,但是我们想象一下,在可行解中,我们对其进行一系列的遗传学操作,怎样才能直接影响到可行解呢? 我们怎样才能进行对可行解实体进行分解?这里我们就引进了编码成 位串。“编码”一词对于非科班的学生来说,显得有些抽象。我就简单做个解释吧:在我们大学计算
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值