前几天,在听了学长关于遗传优化算法应用在考虑TMD作用的地震分析之后,感觉到优化算法一系列的优化算法的强大之处。回来也趁热打铁查了一下资料,大致理解一下遗传算法的机理。下面就记录分享一下吧。
一、遗传算法简介
顾名思义,遗传算法是模拟生物在自然环境下的遗传和进化过程的一种自适应的全局优化搜索算法,通过借助遗传学的原理,经过自然选择、遗传、变异等作用机制进而筛选出具有适应性更高的个体(适者生存)。遗传算法从20世纪七八十年代的诞生到现在主要集中的适用范围为:NP问题(指存在多项式算法能够解决的非决定性问题)、非线性、多峰函数优化和多目标优化问题等等。同时在机器学习、模式识别和神经网络及社会科学中的应用也显得非常出色。
二、遗传算法的算法理论
2.1遗传算法基本概念与术语:
遗传算法的概念简单来说,就是利用种群搜索技术将种群作为一组问题解,通过对当前种群施加类似生物遗传环境因素的选择、交叉、变异等一系列的遗传操作来产生新一代的种群,并逐步使种群优化到包含近似最优解的状态。
术语:
遗传学术语 | 遗传算法术语 |
---|---|
种群 | 可行解集 |
个体 | 可行解 |
染色体 | 可行解的编码 |
基因 | 可行解编码的分量 |
基因形式 | 遗传编码 |
适应度 | 评价的函数值(适应度函数) |
选择 | 选择操作 |
交叉 | 编码的交叉操作 |
变异 | 可行解编码的变异 |