数学分析复习:经典的数列极限题(持续补充中……)

本篇文章适合个人复习翻阅,不建议新手入门使用

极限经典例题

例1

lim ⁡ n → ∞ n 5 2 n = 0 \lim\limits_{n\to\infty}\frac{n^5}{2^n}=0 nlim2nn5=0

证法1:(二项式定理)
由二项式定理得 n 5 2 n = n 5 1 + C n 1 + C n 2 + ⋯ + C n n < n 5 C n 6 = n 4 ⋅ 6 ! ( n − 5 ) 5 \frac{n^5}{2^n} =\frac{n^5}{1+C_n^1+C_n^2+\cdots+C_n^n} <\frac{n^5}{C_n^6} =\frac{n^4\cdot 6!}{(n-5)^5} 2nn5=1+Cn1+Cn2++Cnnn5<Cn6n5=(n5)5n46!
下面由定义易证

证法2:(单调有界数列必收敛)
a n = n 5 2 n a_n=\frac{n^5}{2^n} an=2nn5
单调:
a n + 1 a n = 1 2 ( 1 + 1 n ) 5 → 1 2 < 1 \frac{a_{n+1}}{a_n}=\frac{1}{2}(1+\frac{1}{n})^5\to \frac{1}{2}<1 anan+1=21(1+n1)521<1有界:0为下界

故设 lim ⁡ n → ∞ a n = a \lim\limits_{n\to\infty}a_{n}=a nliman=a
a = lim ⁡ n → ∞ a n + 1 = lim ⁡ n → ∞ 1 2 ( 1 + 1 n ) 5 a n = 1 2 a a=\lim\limits_{n\to\infty}a_{n+1}=\lim\limits_{n\to\infty}\frac{1}{2}(1+\frac{1}{n})^5a_n=\frac{1}{2}a a=nliman+1=nlim21(1+n1)5an=21a得到 a = 0 a=0 a=0

注:该极限的意义是指数函数的阶数比幂函数大

例2

lim ⁡ n → ∞ n n = 1 \lim\limits_{n\to\infty}\sqrt[n]{n}=1 nlimnn =1

证法1:(平均值不等式)
1 ≤ n n = ( n n ⋅ 1 ⋅ 1 ⋯ 1 ⏟ n − 2 个 1 ) 1 n < 2 n + n − 2 n < 1 + 2 n \begin{split} 1\leq&\sqrt[n]{n}=(\sqrt{n}\sqrt{n}\cdot\underbrace{1\cdot 1\cdots 1}_{n-2个1})^{\frac{1}{n}}\\ <&\frac{2\sqrt{n}+n-2}{n}\\ <&1+\frac{2}{\sqrt{n}} \end{split} 1<<nn =(n n n21 111)n1n2n +n21+n 2

证法2:(二项式定理)
y n = n n − 1 ≥ 0 y_n=\sqrt[n]{n}-1\geq 0 yn=nn 10,则
n = ( 1 + y n ) n ≥ n ( n − 1 ) 2 y n 2 n=(1+y_n)^n\geq \frac{n(n-1)}{2}y_n^2 n=(1+yn)n2n(n1)yn2
y n ≤ 2 n − 1 < ε y_n\leq \sqrt{\frac{2}{n-1}}<\varepsilon ynn12 <ε

证法3:(单调有界数列必收敛+平均值不等式)
a n + 1 = n + 1 n + 1 < a n = n n ⇔ ( 1 + 1 n ) n < n a_{n+1}=\sqrt[n+1]{n+1}<a_n=\sqrt[n]{n}\Leftrightarrow (1+\frac{1}{n})^n<n an+1=n+1n+1 <an=nn (1+n1)n<n由平均值不等式
1 n ( 1 + 1 n ) n = ( 1 n ) 2 ( 1 + 1 n ) n < ( n + 1 + 2 n n + 2 ) n + 2 \frac{1}{n}(1+\frac{1}{n})^n=(\frac{1}{\sqrt{n}})^2(1+\frac{1}{n})^n<(\frac{n+1+\frac{2}{\sqrt{n}}}{n+2})^{n+2} n1(1+n1)n=(n 1)2(1+n1)n<(n+2n+1+n 2)n+2 n > 4 n>4 n>4,得数列单调递减,又以1为下界,则收敛
lim ⁡ n → ∞ n n = a ≥ 1 \lim\limits_{n\to\infty}\sqrt[n]{n}=a\geq 1 nlimnn =a1,下证 a ≤ 1 a\leq 1 a1,用反证法
a = 1 + h , h > 0 a=1+h,h>0 a=1+h,h>0,当n充分大时, n > 1 + h \sqrt{n}>1+h n >1+h,则
n > ( 1 + h ) n > n ( n − 1 ) 2 h 2 n>(1+h)^n>\frac{n(n-1)}{2}h^2 n>(1+h)n>2n(n1)h2这不可能

例3

lim ⁡ n → ∞ a n n ! ( a > 0 ) \lim\limits_{n\to\infty}\frac{a^n}{n!}(a>0) nlimn!an(a>0)

证法1:(定义)
a n n ! < a [ a ] ⋅ a n − [ a ] 1 ⋅ 2 ⋯ ( [ a ] + 1 ) ⋅ ( [ a ] + 1 ) ⋯ ( [ a ] + 1 ) = a [ a ] 1 ⋅ 2 ⋯ ( [ a ] + 1 ) ( a [ a ] + 1 ) n − [ a ] → 0 \begin{split} \frac{a^n}{n!}&<\frac{a^{[a]\cdot a^{n-[a]}}}{1\cdot 2\cdots([a]+1)\cdot([a]+1)\cdots([a]+1)}\\ &=\frac{a^{[a]}}{1\cdot 2\cdots ([a]+1)}(\frac{a}{[a]+1})^{n-[a]}\\ &\to 0\\ \end{split} n!an<12([a]+1)([a]+1)([a]+1)a[a]an[a]=12([a]+1)a[a]([a]+1a)n[a]0

例4

证明以下数列发散
S n = 1 + 1 2 + 1 3 + ⋯ + 1 n S_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} Sn=1+21+31++n1

证法1:(Oresme)(找较小的数列,证其发散)
注意到
1 n + 1 + 1 n + 2 + ⋯ + 1 2 n > n ⋅ 1 2 n = 1 2 \frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}>n\cdot \frac{1}{2n}=\frac{1}{2} n+11+n+21++2n1>n2n1=21

  • S 2 = 1 + 1 2 S_2=1+\frac{1}{2} S2=1+21
  • S 4 = S 2 + 1 3 + 1 4 > 1 + 2 2 S_4=S_2+\frac{1}{3}+\frac{1}{4}>1+\frac{2}{2} S4=S2+31+41>1+22
  • S 8 = S 4 + 1 5 + ⋯ + 1 8 > 1 + 3 2 S_8=S_4+\frac{1}{5}+\cdots+\frac{1}{8}>1+\frac{3}{2} S8=S4+51++81>1+23

归纳可得 S 2 n ≥ 1 + n 2 S_{2^n}\geq 1+\frac{n}{2} S2n1+2n,原数列 { S n } \{S_n\} {Sn}必然发散

证法2:(Jacobi-Bernoulli)(找较小的数列,证其发散)
注意到
1 n + 1 + 1 n + 2 + ⋯ + 1 n 2 > n 2 − n n 2 = 1 − 1 n \frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n^2}>\frac{n^2-n}{n^2}=1-\frac{1}{n} n+11+n+21++n21>n2n2n=1n1
1 n + 1 n + 1 + 1 n + 2 + ⋯ + 1 n 2 > 1 \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n^2}>1 n1+n+11+n+21++n21>1

  • S 4 = 1 + ( 1 2 + 1 3 + 1 4 ) > 2 S_4=1+(\frac{1}{2}+\frac{1}{3}+\frac{1}{4})>2 S4=1+(21+31+41)>2
  • S 25 = S 4 + 1 5 + ⋯ + 1 25 > 3 S_{25}=S_4+\frac{1}{5}+\cdots+\frac{1}{25}>3 S25=S4+51++251>3
  • ……

{ S n } \{S_n\} {Sn}必然发散

证法3:(反证法)
S 2 n = A n + B n S_{2n}=A_n+B_n S2n=An+Bn收敛,其中

  • A n = 1 + 1 3 + 1 5 + ⋯ + 1 2 n − 1 A_n=1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2n-1} An=1+31+51++2n11
  • B n = 1 2 + 1 4 + 1 6 + ⋯ + 1 2 n B_n=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2n} Bn=21+41+61++2n1

lim ⁡ n → ∞ B n = 1 2 S , lim ⁡ n → ∞ ( S 2 n − B n ) = 1 2 S \lim\limits_{n\to\infty}B_n=\frac{1}{2}S, \lim\limits_{n\to\infty}(S_{2n}-B_n)=\frac{1}{2}S nlimBn=21S,nlim(S2nBn)=21S
∀ n , A n − B n > 1 2 \forall n,A_n-B_n>\frac{1}{2} n,AnBn>21,则 A n , B n A_n,B_n An,Bn收敛于同一极限不可能

例5

数列 { sin ⁡ n } \{\sin n\} {sinn}发散

证法1:(构造两个收敛于不同极限的子列)
对每个k,区间 [ 2 k π + π 4 , 2 k π + 3 4 π ] [2k\pi+\frac{\pi}{4},2k\pi+\frac{3}{4}\pi] [2+4π,2+43π]内必能选到一个正整数,记为 n k n_k nk,子列 { sin ⁡ n k } \{\sin n_k\} {sinnk}若收敛,极限必大于等于 2 2 \frac{\sqrt{2}}{2} 22
对每个k,区间 [ 2 k π + π , 2 k π + 2 π ] [2k\pi+\pi,2k\pi+2\pi] [2+π,2+2π]内必能选到一个正整数,记为 n k ′ n_k' nk,子列 { sin ⁡ n k ′ } \{\sin n_k'\} {sinnk}若收敛,极限必小于等于0

证法2:(反证法)
lim ⁡ n → ∞ sin ⁡ n = a \lim\limits_{n\to\infty}\sin n=a nlimsinn=a,则
sin ⁡ ( n + 1 ) − sin ⁡ ( n − 1 ) = 2 sin ⁡ 1 ⋅ cos ⁡ n → 0 ⇒ cos ⁡ n → 0 \sin (n+1)-\sin (n-1)=2\sin1\cdot\cos n\to 0\Rightarrow \cos n\to 0 sin(n+1)sin(n1)=2sin1cosn0cosn0
cos ⁡ ( n + 1 ) − cos ⁡ ( n − 1 ) → 0 ⇒ sin ⁡ n → 0 \cos (n+1)-\cos(n-1)\to 0\Rightarrow \sin n\to 0 cos(n+1)cos(n1)0sinn0
这与 sin ⁡ 2 n + cos ⁡ 2 n = 1 \sin^2n+\cos^2n=1 sin2n+cos2n=1矛盾

例6

证明以下数列收敛 L n = n ⋅ sin ⁡ π n L_n=n\cdot\sin{\frac{\pi}{n}} Ln=nsinnπ

证法1:(单调有界数列必收敛)

L n L_n Ln 单调递增:即证 n sin ⁡ π n ≤ ( n + 1 ) sin ⁡ π n + 1 n\sin{\frac{\pi}{n}}\leq (n+1)\sin{\frac{\pi}{n+1}} nsinnπ(n+1)sinn+1π,作代换 t = π n ( n + 1 ) t=\frac{\pi}{n(n+1)} t=n(n+1)π,即证
n sin ⁡ ( n + 1 ) t ≤ ( n + 1 ) sin ⁡ n t n\sin{(n+1)t}\leq (n+1)\sin{nt} nsin(n+1)t(n+1)sinnt注意到
tan ⁡ n t = tan ⁡ ( n − 1 ) t + tan ⁡ t 1 − tan ⁡ ( n − 1 ) t tan ⁡ t ≥ tan ⁡ ( n − 1 ) t + tan ⁡ t ≥ n tan ⁡ t \begin{split} \tan{nt}&=\frac{\tan{(n-1)t}+\tan{t}}{1-\tan{(n-1)t}\tan{t}}\\ &\geq \tan{(n-1)t}+\tan{t}\\ &\geq n\tan{t} \end{split} tannt=1tan(n1)ttanttan(n1)t+tanttan(n1)t+tantntant
sin ⁡ ( n + 1 ) t = sin ⁡ n t cos ⁡ t + cos ⁡ n t sin ⁡ t = sin ⁡ n t cos ⁡ t ( 1 + tan ⁡ t tan ⁡ n t ) ≤ sin ⁡ n t ( 1 + 1 n ) \begin{split} \sin{(n+1)t}&=\sin{nt}\cos{t}+\cos{nt}\sin{t}\\ &=\sin{nt}\cos{t}(1+\frac{\tan{t}}{\tan{nt}})\\ &\leq \sin{nt}(1+\frac{1}{n}) \end{split} sin(n+1)t=sinntcost+cosntsint=sinntcost(1+tannttant)sinnt(1+n1) L n L_n Ln 有上界易证

注:

  1. L n L_n Ln 的几何意义:单位圆内接正 n n n 边形的半周长
  2. S n = n ⋅ sin ⁡ π n ⋅ cos ⁡ π n < π S_n=n\cdot\sin{\frac{\pi}{n}}\cdot\cos{\frac{\pi}{n}}<\pi Sn=nsinnπcosnπ<π
  3. S n S_n Sn 的几何意义:单位圆内接正 n n n 边形的面积

例7

lim ⁡ x → ∞ x 1 x = 1 \lim\limits_{x\to\infty}x^{\frac{1}{x}}=1 xlimxx1=1

证法1
注意到 1 ≤ x 1 x ≤ ( 1 + n ) 1 n 1\leq x^{\frac{1}{x}}\leq (1+n)^{\frac{1}{n}} 1xx1(1+n)n1

例8

证明以下两个数列收敛,并收敛于同一极限
{ ( 1 + 1 n ) n } , { ( 1 + 1 n ) n + 1 } \{(1+\frac{1}{n})^n\},\{(1+\frac{1}{n})^{n+1}\} {(1+n1)n},{(1+n1)n+1}

证法(单调有界数列必收敛)
单调性:由平均值不等式
x n = ( 1 + 1 n ) n ⋅ 1 ≤ [ n ( 1 + 1 n ) + 1 n + 1 ] n + 1 = x n + 1 x_n=(1+\frac{1}{n})^n\cdot 1\leq [\frac{n(1+\frac{1}{n})+1}{n+1}]^{n+1}=x_{n+1} xn=(1+n1)n1[n+1n(1+n1)+1]n+1=xn+1 1 y n = ( n n + 1 ) n + 1 ≤ [ n + 1 n n + 1 + 1 n + 2 ] n + 2 = 1 y n + 1 \frac{1}{y_n}=(\frac{n}{n+1})^{n+1}\leq [\frac{n+1\frac{n}{n+1}+1}{n+2}]^{n+2}=\frac{1}{y_{n+1}} yn1=(n+1n)n+1[n+2n+1n+1n+1]n+2=yn+11
有界性: 2 = x 1 ≤ x n < y n ≤ y 1 = 4 2=x_1\leq x_n<y_n\leq y_1=4 2=x1xn<yny1=4

极限相同:只需找到两个数列的关系,易证

注:即 lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = e \lim\limits_{n\to\infty}(1+\frac{1}{n})^n=\lim\limits_{n\to\infty}(1+\frac{1}{n})^{n+1}=e nlim(1+n1)n=nlim(1+n1)n+1=e

例9

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e xlim(1+x1)x=e

证明
注意到对任意 x ≥ 1 x\geq 1 x1 ,有 ( 1 + 1 [ x ] + 1 ) [ x ] < ( 1 + 1 x ) x < ( 1 + 1 [ x ] ) [ x ] + 1 (1+\frac{1}{[x]+1})^{[x]}<(1+\frac{1}{x})^x<(1+\frac{1}{[x]})^{[x]+1} (1+[x]+11)[x]<(1+x1)x<(1+[x]1)[x]+1

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值