第一章 函数与极限

本章将介绍映射、函数、极限和函数的连续性等基本概念以及它们的一些性质。 ——高等数学同济版

习题 1-1 映射与函数

映射是现代数学中的一个基本概念,而函数是微积分的研究对象,也是映射的一种。本节主要介绍映射、函数及有关概念、函数的性质与运算等。——高等数学同济版

  本节主要介绍映射和函数的有关基础概念,相对简单。

习题 1-2 数列的极限

  这一节主要介绍了数列极限的定义和收敛数列的性质。

3.下列关于数列an{a_n}的极限是aa的定义那些是对的,哪些是错的?如果是对的,是说明理由;如果是错的,试给出一个反例。

(2)对于任意给定的ε<0\varepsilon<0,存在NN+\mathit{N}\in\mathbf{N_+},当n>Nn>N时,有无穷多项xnx_n,使不等式xna<ε|x_n-a|<\varepsilon成立;

  错误;如对数列
xn={n,n=2k1,11n,n=2k,kN+,a=1. x_n= \begin{cases} n,&n=2k-1,\\ 1-\frac {1}{n},&n=2k, \end{cases} \quad k\in\mathbf{N_+},\quad a=1.
对任意给定的ε>0\varepsilon>0(设ε<1\varepsilon<1),存在N=[ 1ε ]N=[\ \cfrac {1}{\varepsilon}\ ],当n>Nn>Nnn为偶数时,xna = 1n<ε|x_n-a|\ =\ \cfrac {1}{n}<\varepsilon成立,但xn{x_n}的极限不存在。(无穷多项满足不等于全部满足

习题 1-3 函数的极限

  这一节主要包括了函数极限的定义及基本性质,理解即可。

习题1-4 无穷小与无穷大

  这一节主要介绍了无穷小和无穷大。

7.证明:函数y=1xsin1xy=\cfrac {1}{x}\sin\cfrac{1}{x}在区间(0,1](0,1]内无界,但这个函数不是x0+x\to0^+时的无穷大。

  先证函数y=1xsin1xy=\cfrac {1}{x}\sin\cfrac{1}{x}在区间(0,1](0,1]内无界。
  因为M>0\forall M>0,在区间(0,1](0,1]中总可以找到点x0x_0,使f(x0)>Mf(x_0)>M。例如可取x0=12kπ+π2(kN)x_0=\cfrac {1}{2k\pi+\cfrac {\pi}{2}}(k\isin\mathbf N),则f(x0)=2kπ+π2f(x_0)=2k\pi+\cfrac {\pi}{2},当kk充分大时,可使f(x0)>Mf(x_0)>M。所以y=1xsin1xy=\cfrac {1}{x}\sin\cfrac{1}{x}在区间(0,1](0,1]内无界。

  再证函数y=1xsin1xy=\cfrac {1}{x}\sin\cfrac{1}{x}不是x0+x\to0^+时的无穷大。

  因为M>0\forall M>0δ>0\delta>0,总可以找到点x0x_0,使0<x0<δ0<x_0<\delta,但f(x0)<Mf(x_0)<M。例如,可取x0=12kπ(kN+)x_0=\cfrac {1}{2k\pi}(k\isin\mathbf N_+),当kk充分大时,0<x0<δ0<x_0<\delta,但f(x0)=2kπsin 2kπ=0<Mf(x_0)=2k\pi \sin\ 2k\pi=0<M。所以,y=1xsin1xy=\cfrac {1}{x}\sin\cfrac{1}{x}不是x0+x\to0^+时的无穷大。(这道题比较唬人,需要仔细分析题目才可以完成

习题1-5 极限运算法则

本节讨论极限的求法,主要是建立极限的四则运算法则和复合函数的极限运算法则,利用这些法则,可以求某些函数的极限。——高等数学同济版

  本节主要介绍了极限的四则运算法则和复合函数的极限运算法则。

习题 1-6 极限存在准则 两个重要极限

  该节主要介绍了极限存在准则和limx0sinxx=1\lim\limits_{x\to0}\cfrac {\sin x}{x}=1limx(1+1x)x=e\lim\limits_{x\to\infty}\left(1+\cfrac{1}{x}\right)^x=e

习题 1-7 无穷小的比较

  本节介绍了有关于无穷小的比较方法,包括了以下的常用替换公式。
  当x0x\to0时,以下公式成立:
sinxx1cosx12x2tanxxarcsinxxarctanxxax1xlnaln(x+1)x(1+βx)α11+αβxxsinxx36loga(1+x)xlna \sin x\sim x\\ 1-\cos x\sim\cfrac {1}{2} x^2\\ \tan x\sim x\\ \arcsin x\sim x\\ \arctan x\sim x\\ a^x-1\sim x\ln a\\ \ln(x+1)\sim x\\ (1+\beta x)^\alpha-1\sim1+\alpha\beta x\\ x-\sin x\sim\frac{x^3}{6}\\ \log_a(1+x)\sim\frac{x}{\ln a}

5.利用等价无穷小的性质,求下列极限:

(4)limx0sinxtanx(1+x231)(1+sinx1)\lim\limits_{x\to 0}\cfrac{\sin x-\tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}

  
limx0sinxtanx(1+x231)(1+sinx1)=limx0sinx(1secx)13x212sinx=limx012x216x2=3\begin{aligned}\lim\limits_{x\to 0}\cfrac{\sin x-\tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}&=\lim\limits_{x\to 0}\cfrac{\sin x(1-\sec x)}{\cfrac{1}{3}x^2\cdot\cfrac{1}{2}\sin x}\\ &=\lim\limits_{x\to 0}\cfrac{-\cfrac{1}{2}x^2}{\cfrac{1}{6}x^2}=-3\end{aligned}
  (这道题主要利用常用公式求解,否则不易想到求解方法)

习题 1-8 函数的连续性与间断点

  这一节主要介绍了函数的连续性以及间断点的分类。

3.下列函数在指出的点出间断,说明这些间断点属于哪一类。如果使可去间断点,那么补充或改变函数的定义使它连续:

(2)y=xtanx,x=kπ,x=kπ+π2(k=0,±1,±2);y=\cfrac{x}{\tan x},x=k\pi,x=k\pi+\cfrac{\pi}{2}\qquad(k=0,\pm1,\pm2\dots);

  对x=0x=0,因为f(0)f(0)无定义,limx0xtanx=limx0xx=1\lim\limits_{x\to 0}\cfrac{x}{\tan x}=\lim\limits_{x\to 0}\cfrac{x}{x}=1,所以x=0x=0为第一类间断点(可去间断点),重新定义函数:
f1(x)={xtanx,xkπ,kπ+π2,1,x=0(kZ), f_1(x)=\begin{cases} \cfrac{x}{\tan x},&x\neq k\pi,k\pi+\cfrac{\pi}{2},\\ 1,&x=0 \end{cases}\qquad (k\in\mathbf Z),
f1(x)f_1(x)x=0x=0处连续。
  对x=kπ(k=±1,±2)x=k\pi(k=\pm1,\pm2\dots),因为limxkπxtanx=\lim\limits_{x\to k\pi}\cfrac{x}{\tan x}=\infty,所以x=kπ(k=±1,±2)x=k\pi(k=\pm1,\pm2\dots)为第二类间断点(无穷间断点)。(由于tanx\tan x可以有取值,这里容易误认为x=kπ(k=±1,±2)x=k\pi(k=\pm1,\pm2\dots)也为第一类间断点
  对x=kπ+π2(kZ)x=k\pi+\cfrac{\pi}{2} (k\in\mathbf Z),因为limxkπ+π2xtanx=0\lim\limits_{x\to k\pi+\frac{\pi}{2}}\cfrac{x}{\tan x}=0,而函数在kπ+π2k\pi+\cfrac{\pi}{2}处无意义,所以x=kπ+π2(kZ)x=k\pi+\cfrac{\pi}{2} (k\in\mathbf Z)为第一类间断点(可去间断点),重新定义函数:
f2(x)={xtanx,xkπ,kπ+π2,0,x=kπ+π2(kZ), f_2(x)=\begin{cases} \cfrac{x}{\tan x},&x\neq k\pi,k\pi+\cfrac{\pi}{2},\\ 0,&x=k\pi+\cfrac{\pi}{2} \end{cases}\qquad (k\in\mathbf Z),
f2(x)f_2(x)x=kπ+π2(kZ)x=k\pi+\cfrac{\pi}{2} (k\in\mathbf Z)处连续。(这里由于tanx\tan x取不到值,可能误认为该处为第二类间断点

习题1-9 连续函数的运算与初等函数的连续性

  本节介绍较为复杂的连续性证明以及在间断点处的极限求解,较难。

4.求下列极限:

(5)limx(3+x6+x)x12\lim\limits_{x\to\infty}\left(\cfrac{3+x}{6+x}\right)^{\cfrac{x-1}{2}}


limx(3+x6+x)x12=limx[(136+x)6+x3]32limx(136+x)72=e32. \lim\limits_{x\to\infty}\left(\cfrac{3+x}{6+x}\right)^{\cfrac{x-1}{2}}=\lim\limits_{x\to\infty}\left[\left(1-\cfrac{3}{6+x}\right)^{-\cfrac{6+x}{3}}\right]^{-\cfrac{3}{2}}\cdot\lim\limits_{x\to\infty}\left(1-\cfrac{3}{6+x}\right)^{-\cfrac{7}{2}}=e^{-\frac{3}{2}}.

(6)limx01+tanx1+sinxx1+sin2xx\lim\limits_{x\to0}\cfrac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\sqrt{1+\sin^2x}-x}


limx01+tanx1+sinxx1+sin2xx=limx0tanxsinxx(1+sin2x1)(1+tanx+1+sinx)=limx0(sinxxsecx11+sin2x111+tanx+1+sinx)=limx0sinxxlimx012x212sin2xlimx011+tanx+1+sinx=1112=12. \begin{aligned}\lim\limits_{x\to0}\cfrac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\sqrt{1+\sin^2x}-x}&=\lim\limits_{x\to0}\cfrac{\tan x-\sin x}{x(\sqrt{1+\sin^2x}-1)(\sqrt{1+\tan x}+\sqrt{1+\sin x})}\\ &=\lim\limits_{x\to0}(\cfrac{\sin x}{x}\cdot\cfrac{\sec x-1}{\sqrt{1+\sin^2x}-1}\cdot\cfrac{1}{\sqrt{1+\tan x}+\sqrt{1+\sin x}})\\ &=\lim\limits_{x\to0}\cfrac{\sin x}{x}\cdot\lim\limits_{x\to0}\cfrac{\cfrac{1}{2}x^2}{\cfrac{1}{2}\sin^2x}\cdot\lim\limits_{x\to0}\cfrac{1}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}\\ &=1\cdot1\cdot\cfrac{1}{2}=\cfrac{1}{2}.\end{aligned}

(8)limx0e3xe2xex+1(1x)(1+x)31\lim\limits_{x\to0}\cfrac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}


limx0e3xe2xex+1(1x)(1+x)31=limx0(e2x1)(ex1)(1x2)131=limx02xx13x2=6. \lim\limits_{x\to0}\cfrac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)}-1}=\lim\limits_{x\to0}\cfrac{(e^{2x}-1)(e^x-1)}{(1-x^2)^{\frac{1}{3}}-1}=\lim\limits_{x\to0}\cfrac{2x\cdot x}{-\cfrac{1}{3}x^2}=-6.
这方面主要涉及到分解因式和等价无穷小替换,要多练习

5.设f(x)f(x)R\mathbf R上连续,且f(x)0f(x)\ne0φ(x)\varphi(x)R\mathbf R上有定义,且有间断点,则下列陈述中,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例。

(1)φ[f(x)]\varphi[f(x)]必有间断点;

  错。例如,φ(x)=sgnx,f(x)=ex,φ[f(x)]1\varphi(x)=\mathinner{\text{sgn}} x,f(x)=e^x,\varphi[f(x)]\equiv1R\mathbf R上处处连续。(这个情况比较少见,很难想到

习题1-10 闭区间上连续函数的性质

在闭区间上连续的函数有几个重要的性质,今以定理的形式叙述它们。——高等数学同济版

  这一节主要讲述了有关于函数连续的几个重要性质。

4.证明任一最高次幂的指数为奇数的代数方程a0x2n+1+a1x2n++a2nx+a2n+1=0a_0x^{2n+1}+a_1x^{2n}+\cdots+a_{2n}x+a_{2n+1}=0至少有一实根,其中a0,a1,,a2n+1a_0,a_1,\cdots,a_{2n+1}均为常数,nNn\in\mathbf N

  当xx的绝对值充分大时,f(x)=a0x2n+1+a1x2n++a2nx+a2n+1f(x)=a_0x^{2n+1}+a_1x^{2n}+\cdots+a_{2n}x+a_{2n+1}的符号取决于a0a_0的符号,即当xx为正与a0a_0同号,当xx为负与a0a_0异号,且a00a_0\ne0。因f(x)f(x)是连续函数,它在某充分大的区间的两端处异号,由零点定理可知它在某一区间内某一点处必定为零,故方程a0x2n+1+a1x2n++a2nx+a2n+1=0a_0x^{2n+1}+a_1x^{2n}+\cdots+a_{2n}x+a_{2n+1}=0至少有一实根。(个人认为这个证明并不严谨,过于简单,意思很明白但不太符合数学规范,答案给的是这个。

总习题一

9.求下列极限:

(5)limx0(ax+bx+cx3)1x.\lim\limits_{x\to0}\left(\cfrac{a^x+b^x+c^x}{3}\right)^{\frac{1}{x}}.

  因为
(ax+bx+cx3)1x=(1+ax+bx+cx33)3ax+bx+cx313(ax1x+bx1x+cx1x), \left(\cfrac{a^x+b^x+c^x}{3}\right)^{\frac{1}{x}}=\left(1+\cfrac{a^x+b^x+c^x-3}{3}\right)^{\cfrac{3}{a^x+b^x+c^x-3}\cdot\frac{1}{3}\left(\cfrac{a^x-1}{x}+\cfrac{b^x-1}{x}+\cfrac{c^x-1}{x}\right)},
  而
(1+ax+bx+cx33)3ax+bx+cx3e(x0),ax1xlna,bx1xlnb,cx1xlnc(x0), \left(1+\cfrac{a^x+b^x+c^x-3}{3}\right)^{\cfrac{3}{a^x+b^x+c^x-3}}\to e(x\to0),\\ \cfrac{a^x-1}{x}\to\ln a,\qquad\cfrac{b^x-1}{x}\to\ln b,\qquad\cfrac{c^x-1}{x}\to\ln c(x\to0),
  所以
limx0(ax+bx+cx3)1x=e13(lna+lnb+lnc)=(abc)13. \lim\limits_{x\to0}\left(\cfrac{a^x+b^x+c^x}{3}\right)^{\cfrac{1}{x}}=e^{\frac{1}{3}(\ln a+\ln b+\ln c)}=(abc)^{\frac{1}{3}}.
这道题代换有点复杂,能想清楚代换过程即可

14.如果存在直线L:y=kx+bL:y=kx+b,使得当xx\to\infty(或x+,xx\to+\infty,x\to-\infty)时,曲线y=f(x)y=f(x)上的动点M(x,y)M(x,y)到直线LL的距离d(M,L)0d(M,L)\to0,那么称LL为曲线y=f(x)y=f(x)渐近线。当直线LL的斜率k0k\ne0时,称LL斜渐近线

(1)证明:直线L:y=kx+bL:y=kx+b为曲线y=f(x)y=f(x)的渐近线的充分必要条件是k=limx(x+x)f(x)x,b=limx(x+x)[f(x)kx];k=\underset{\begin{pmatrix}x\to+\infty\\x\to-\infty\end{pmatrix}}{\lim\limits_{x\to\infty}}\cfrac{f(x)}{x},\qquad b=\underset{\begin{pmatrix}x\to+\infty\\x\to-\infty\end{pmatrix}}{\lim\limits_{x\to\infty}}[f(x)-kx];

  就x+x\to+\infty的情形证明,其他情况类似。
  设L:y=kx+bL:y=kx+b为曲线y=f(x)y=f(x)的渐近线。
  11^。k0k\ne0,如下图所示,k=tanαk=\tan\alphaα\alphaLL的倾角,απ2\alpha\ne\cfrac{\pi}{2}),曲线y=f(x)y=f(x)上的动点M(x,y)M(x,y)到直线LL的距离为MK|MK|。过MM作横轴的垂线,叫直线LLK1K_1,则
在这里插入图片描述
MK1=MKcosα. |MK_1|=\cfrac{|MK|}{\cos\alpha}.
  显然MK0(x+)|MK|\to0(x\to+\infty)MK10(x+)|MK_1|\to0(x\to+\infty)等价,而
MK1=f(x)(kx+b). |MK_1|=|f(x)-(kx+b)|.
  因为L:y=kx+bL:y=kx+b是曲线y=f(x)y=f(x)的渐近线。所以
MK0(x+)MK10(x+), |MK|\to0(x\to+\infty)\Rightarrow|MK_1|\to0(x\to+\infty),
  即
limx+[f(x)(kx+b)]=0,(1) \begin{matrix} \lim\limits_{x\to+\infty}[f(x)-(kx+b)]=0,&\qquad(1) \end{matrix}
  从而
k=limxf(x)x,b=limx[f(x)kx] \begin{aligned} k&=\lim\limits_{x\to\infty}\cfrac{f(x)}{x},\qquad \\b&=\lim\limits_{x\to\infty}[f(x)-kx] \end{aligned}
在考纲上明确要求会求函数的水平、垂直及斜渐近线,但斜渐近线只有在第一章题目中明确提及定义和求法,记录于此作为提醒

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

发布了3 篇原创文章 · 获赞 0 · 访问量 96
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览