本地部署 AI 大模型全指南:Ollama + DeepSeek-R1 + Open-WebUI 完整教程

本教程主要介绍了如何通过简洁的步骤,在本地搭建强大的 AI 模型环境,运行 DeepSeek-R1 并通过 Open-WebUI 进行直观交互。


前言

随着 AI 领域的快速发展,越来越多的开源大模型正在支持本地运行。其优势在于 隐私保护、无需依赖云端、响应速度快

Ollama 是一款强大的工具,它提供了简洁的接口,让用户能够在本地高效运行各种开源大模型,如 DeepSeek-R1

本教程将详细介绍 Ollama 的安装、DeepSeek-R1 模型的本地部署,以及如何结合 Open-WebUI 进行可视化交互。通过本文,你将学会:

  • 如何在本地安装和配置 Ollama,为运行大模型提供便捷的工具和环境。
  • 如何下载并运行 DeepSeek-R1 模型,体验强大的 AI 推理能力。
  • 如何通过 Open-WebUI 实现 Web 端交互,提供直观、易用的可视化操作界面。

让你无需依赖云端,轻松体验高效的本地 AI 模型运行与智能对话。

想要无需云端,轻松在本地搭建属于自己的 AI 大模型环境吗?本文将手把手教你实现!


一、安装ollama

1.1 下载安装Ollama

Ollama 是一个高效的 AI 模型管理工具,它支持在 Windows、macOS 和 Linux 上本地运行多种大模型如 DeepSeek-R1,并提供简洁的命令行接口。本教程详细介绍 Ollama 的下载、安装、环境配置,以及如何在终端运行 DeepSeek-R1 模型。

官网下载与安装

ollama下载页面
下载好安装包,运行安装程序,引导界面直接 install,按照安装向导的指示完成安装

基础命令与教程

1.2 自定义模型存储路径(可选)

Ollama 默认将模型存储在 C:\Users\你的用户名\.ollama\models(Windows)或 ~/.ollama/models(macOS/Linux)
设置方法:
右键 “此电脑” → 属性 → 高级系统设置 → 环境变量

在这里插入图片描述
右下角,进入高级系统设置在这里插入图片描述
进入环境变量
在这里插入图片描述
创建用户变量,点击“新建”
在这里插入图片描述
如图,自行选择下载路径

  • 变量名:OLLAMA_MODELS
  • 变量值:D:\Ollama\Models(你想存储的路径)

在这里插入图片描述

二、本地部署 DeepSeek-R1

2.1. 在 Ollama 上下载 DeepSeek-R1

  1. 访问 Ollama模型库DeepSeek-R1 模型页面 找到左上角 Model
    在这里插入图片描述
  2. 选择合适内存的模型(图中选择7b)
  3. 复制该模型的命令并在终端中粘贴运行:
ollama run deepseek-r1:7b  //选择 7b 模型

打开终端 (Window键+R,输入cmd),确定
在这里插入图片描述
粘贴刚才复制好的命令,等待下载完成
4. 看到success,即为完成
验证安装
输入ollama --version命令
输出如下:
在这里插入图片描述

2.2 运行模型并进行验证

  1. 在终端输入下面命令来启动 DeepSeek-R1 模型
ollama run deepseek-r1
  1. 模型的文本交互界面如下,可以输入问题与AI直接对话,例如 向AI提问"你是谁"在这里插入图片描述

三、Open-WebUI 安装与使用

Open-WebUI 是一个 Web 界面工具,帮助你以图形化方式与本地运行的 AI 模型进行交互。

3.1 通过 pip 安装 Open-WebUI

下载python后,使用pip install open-webui ' 命令 在终端安装 open-webui

检查是否成功下载
pip show onnxruntime
返回以下信息,说明已经安装
在这里插入图片描述
安装完成后,输入以下命令启动 Web 服务:

open-webui serve

遇到报错:
报错内容:ValueError: The onnxruntime python package is not installed. Please install it with pip install onnxruntime
运行open-webui报错
根据提示安装 onnxruntime:

pip install onnxruntime

若仍然报错,可以安装 C++ Build Tools 来支持运行 onnxruntime,或检查 Python 版本与 onnxruntime 版本的兼容性。
1.onnxruntime库需要C++来支持运行
需要下载C++ Build Tools

检查 Visual C++ Redistributable 是否安装
通过控制面板查看:
按下 Win + R,输入 appwiz.cpl,回车打开 程序和功能。
在列表中找到 Microsoft Visual C++ 2015-2022 Redistributable。
如果版本号是 14.30 或更高(例如 14.38.33135.0),则已安装。

若没有,需从官网下载安装
下载地址:
https://aka.ms/vs/17/release/vc_redist.x64.exe
根据系统架构(64位或32位)下载对应的安装包:
64位系统:vc_redist.x64.exe
32位系统:vc_redist.x86.exe
2. Python与onnxruntime版本不兼容 导致
检查Python版本与onnxruntime的兼容性 参考官方兼容性表

# 卸载当前版本
pip uninstall onnxruntime -y
# 安装支持Python 3.12的最新版本(截至20247月,最新为1.17.3)
pip install onnxruntime==1.17.3 --no-cache-dir

还可以选择通过 Docker 部署 Open-WebUI,具体步骤可以参考官方文档。

3.2 启动 Open-WebUI

安装完成后,在终端输入以下命令启动服务
open-webui serve
来到如下界面,即为成功
在这里插入图片描述
打开浏览器,访问地址 http://localhost:8080
首次访问时,你需要注册账号,默认情况下,第一个账号为管理员权限。

在这里插入图片描述


总结

本教程介绍了 Ollama 的安装、DeepSeek-R1 本地运行 及 Open-WebUI 交互

  • 如何安装 Ollama 并配置基本环境
  • 如何下载并运行 DeepSeek-R1,并自定义模型存储路径
  • 如何安装并使用 Open-WebUI 提供图形化交互
  • 解决常见问题(如 onnxruntime 报错、环境变量配置等)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值