摘要
-
问题重述
-
问题分析
-
模型假设
-
符号说明
-
本部分是对模型中使用的重要变量进行说明,一般排版时要放到一张表格中。
注意:第一:不需要把所有变量都放到这个表里面,模型中用到的临时变量可以不放。第二:下文中首次出现这些变量时也要进行解释,不然会降低文章的可读性。
-
模型的建立与求解
- 模型建立是将原问题抽象成用数学语言的表达式,它一定是在先前的问题分析和模型假设的基础上得来的。因为比赛时间很紧,大多时候我们都是使用别人已经建立好的模型。这部分一定要将题目问的问题和模型紧密结合起来,切忌随意套用模型。我们还可以对已有模型的某一方面进行改进或者优化,或者建立不同的模型解决同一个问题,这样就是论文的创新和亮点。
-
把实际问题归结为一定的数学模型后,就要利用数学模型求解所提出的实际问题了。一般需要借助计算机软件进行求解,例如常用的软件有Matlab, Spss, Lingo, Excel, Stata, Python等。求解完成后,得到的求解结果应该规范准确并且醒目,若求解结果过长,最好编入附录里。(注意:如果使用智能优化算法或者数值计算方法求解的话,需要简要阐明算法的计算步骤)
-
模型的分析与检验
-
模型的分析与检验的内容也可以放到模型的建立与求解部分,这里我们单独抽出来进行讲解,因为这部分往往是论文的加分项,很多优秀论文也会单独抽出一节来对这个内容进行讨论。
模型的分析 :在建模比赛中模型分析主要有两种,一个是灵敏度(性)分析,另一个是误差分析。灵敏度分析是研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。其通用的步骤是:控制其他参数不变的情况下,改变模型中某个重要参数的值,然后观察模型的结果的变化情况。误差分析是指分析模型中的误差来源,或者估算模型中存在的误差,一般用于预测问题或者数值计算类问题。
模型的检验:模型检验可以分为两种,一种是使用模型之前应该进行的检验,例如层次分析法中一致性检验,灰色预测中的准指数规律的检验,这部分内容应该放在模型的建立部分;另一种是使用了模型后对模型的结果进行检验,数模中最常见的是稳定性检验,实际上这里的稳定性检验和前面的灵敏度分析非常类似,等会大家看到例子就明白了。
-
模型的评价、改进与推广
-
参考文献