第3关:贝叶斯公式与全概率公式

编程要求
根据提示,在右侧编辑器Begin-End部分补充代码。

任务描述:假设我们现在有 10 个盒子,每个盒子中都放了不同数量的苹果和橙子。每次实验的时候会随机从某个盒子里挑出一个水果,选择每个盒子的概率不同。

任务1:根据全概率公式,求挑出的水果是橙子的概率;提示:numpy.sum(a) 可实现对数组 a 求和。
任务2:已知挑出的水果是橙子,根据贝叶斯公式,求是从第一个盒子挑出的概率。
测试说明
平台会对你编写的代码进行测试:

测试输入:


预期输出:

挑出的水果是橙子的概率为: 0.4654342185592185
已知挑出的水果是橙子,是从第一个盒子挑出的概率为: 0.0

# 导入库
import numpy as np

# 共 10 个盒子,b[i][0] 表示盒子 i 中的苹果数量,b[i][1] 表示盒子 i 中的橙子数量
np.random.seed(0)
b = np.random.randint(0, 10, (10, 2))

# 共 10 个盒子,p[i] 表示盒子 i 被挑中的概率
p = np.array([0.1, 0.1, 0.05, 0.15, 0.08, 0.12, 0.09, 0.11, 0.06, 0.14])

# 初始化概率,P 表示挑出的水果是橙子的概率
P = 0

# 任务1:根据全概率公式,求挑出的水果是橙子的概率
########## Begin ##########
for i in range(10):
    total_fruits = b[i][0] + b[i][1]
    if total_fruits > 0:
        P += p[i] * (b[i][1] / total_fruits)
    else:
        P += 0
##########  End  ##########

# 打印结果
print("挑出的水果是橙子的概率为:", P)

# 任务2:已知挑出的水果是橙子,根据贝叶斯公式,求是从第一个盒子挑出的概率
########## Begin ##########
total_fruits_box_1 = b[0][0] + b[0][1]
if total_fruits_box_1 > 0:
    P_1 = (p[0] * (b[0][1] / total_fruits_box_1)) / P
else:
    P_1 = 0
##########  End  ##########

# 打印结果
print("已知挑出的水果是橙子,是从第一个盒子挑出的概率为:", P_1)
    

基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值