1-11 图像复原 opencv树莓派4B 入门系列笔记

目录

一、提前准备

二、代码详解

denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)

三、运行现象

四、完整工程贴出


一、提前准备

        1、树莓派4B 及 64位系统

        2、提前安装opencv库 以及 numpy库

        3、保存一张图片

二、代码详解

import cv2
# 图像复原是指通过去除噪声、模糊等失真来恢复图像的原始质量 
# 打开图像
image = cv2.imread('/home/raspberry4B/Pictures/MD.jpg')
 
# 去除噪声
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
 
# 显示去除噪声后的图像
cv2.imshow('Denoised Image', denoised_image)
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)

  • 功能: 使用fastNlMeansDenoisingColored函数对彩色图像进行去噪处理。该算法是一种非局部均值去噪方法,适用于彩色图像。它通过考虑图像中相似的像素块来减少噪声,同时保留图像的细节和边缘。

  • 参数:

    • image: 输入的原始彩色图像。
    • None: 临时结果存储的占位符,一般设置为None
    • 10: h 参数,用于控制去噪强度。较高的值会去除更多噪声,但也可能丢失细节。
    • 10: hForColorComponents 参数,专门用于控制颜色通道的去噪强度。和前一个参数类似,它也影响去噪的效果。
    • 7: templateWindowSize 参数,模板窗口的大小,通常为奇数。它表示参考像素的局部区域大小。
    • 21: searchWindowSize 参数,搜索窗口的大小。它表示在参考像素的附近区域内搜索相似块的范围。

三、运行现象

四、完整工程贴出

持续更新中……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Serial number V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值