目录
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
一、提前准备
1、树莓派4B 及 64位系统
2、提前安装opencv库 以及 numpy库
3、保存一张图片
二、代码详解
import cv2
# 图像复原是指通过去除噪声、模糊等失真来恢复图像的原始质量
# 打开图像
image = cv2.imread('/home/raspberry4B/Pictures/MD.jpg')
# 去除噪声
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
# 显示去除噪声后的图像
cv2.imshow('Denoised Image', denoised_image)
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
-
功能: 使用
fastNlMeansDenoisingColored
函数对彩色图像进行去噪处理。该算法是一种非局部均值去噪方法,适用于彩色图像。它通过考虑图像中相似的像素块来减少噪声,同时保留图像的细节和边缘。 -
参数:
image
: 输入的原始彩色图像。None
: 临时结果存储的占位符,一般设置为None
。10
:h
参数,用于控制去噪强度。较高的值会去除更多噪声,但也可能丢失细节。10
:hForColorComponents
参数,专门用于控制颜色通道的去噪强度。和前一个参数类似,它也影响去噪的效果。7
:templateWindowSize
参数,模板窗口的大小,通常为奇数。它表示参考像素的局部区域大小。21
:searchWindowSize
参数,搜索窗口的大小。它表示在参考像素的附近区域内搜索相似块的范围。
三、运行现象
四、完整工程贴出
持续更新中……