(一)十分简易快速 自己训练样本 opencv级联haar分类器 车牌识别

🍂1、不说废话,现象展示

        🍃图片识别

        🍃视频识别 

自己训练样本 十分简易快速 opencv级联haar分类器

🍂2、源码以及完整工程贴出

        急用的话可以直接下载复现

🍃图片识别完整代码

# -*- coding: utf-8 -*-

import numpy as np
import cv2

face_cascade = cv2.CascadeClassifier('cascade.xml')
img = cv2.imread('img3.jpg')
  
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray,
                                      scaleFactor=1.2,
                                      minNeighbors=5,
                                      minSize=(120,30),
                                      maxSize=(130,70),
                                      flags=cv2.CASCADE_FIND_BIGGEST_OBJECT )

for (x,y,w,h) in faces:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
    roi_gray = gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    print (int(x+w/2), int(y+h/2))

#imgR = cv2.flip(img, 1)
cv2.imshow('img',img)
key=cv2.waitKey(1)
if key&0XFF==ord('q'):
    cv2.destroyAllWindows()

🍃完整工程链接(含工具,训练图片集,以训练好的xml等)

十分简易快速自己训练样本opencv级联haar分类器车牌识别资源-CSDN文库

🍂3、前言

相较于opencv常规的样本训练方法,本文章提供了一种高效简易的训练方法,很好的减少了初学者四处寻找教程资料而最终却没能复现的痛苦。使用本文方法避免了复杂的配置过程,以及对原理层面的了解,能够在最短时间内训练出自己的样本分类器,迈过机器学习的门槛。

工程使用的训练工具由B站up主黑色时Kong开源

项目使用的是720pUSB摄像头

🍂4、完整步骤讲解

step1:复制工具包

目的:之后训练工具运行产生的文件会放置在  haar训练工具(复制使用)-副本  文件目录下,复制后使用方便工程管理

step2:使用训练工具

此部分可参考视频OpenCV级联器极速训练工具,分分钟开启训练样本之旅!_哔哩哔哩_bilibili

点击运行

点击选择文件夹—>选择positive文件夹作为正样本,点击确定—>同理负样本为negative

注意:不能有中文路径

设置正负样本数量—>根据图片实际宽高比,设置正高正宽负高负宽—>点击开始转换

 此时,positive和negative文件夹内的图片会被转换为灰度图且高宽被放缩为20和80

注意:若有提示MD5验证,点击右下验证即可

适当可减少分类器级数如10,点击开始训练,等待训练完成

若中途或一开始出现训练失败,尝试减少图片数量,图片宽高,再次尝试

训练完成后在xml文件夹中可以找到cascade.xml,该文件就是训练好的分类器文件—>将该文件复制一份放在与运行的python文件的同一目录下即可

step3:运行程序

从python中运行haar_test_pic.py文件就能实现与文章开头相似的现象了 

🍂5、代码详解

被识别的图像以及训练好的分类器在 .py文件 的同一目录下的读取(若不在同一目录下使用绝对路径读取)

import numpy as np
import cv2

face_cascade = cv2.CascadeClassifier('cascade.xml')
img = cv2.imread('img3.jpg')

转为灰度图后使用识别匹配方法

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray,
                                      scaleFactor=1.2,
                                      minNeighbors=5,
                                      minSize=(120,30),
                                      maxSize=(130,70),
                                      flags=cv2.CASCADE_FIND_BIGGEST_OBJECT )

 参数解释

  • image: 输入的图像,一般为灰度图像(单通道),因为 Haar 分类器是基于灰度图像训练的。

  • scaleFactor: 每次图像尺寸缩小的比例,用于创建图像金字塔。典型值在 1.1 到 1.4 之间,默认值通常为 1.3。该参数用于控制图像金字塔中的尺度变化,越接近 1.0,检测的精度越高,但速度越慢。

  • minNeighbors: 每一个候选矩形应该保留的邻近矩形的数目。这个参数越大,检测结果越少,但质量越高。通常值为 3 到 6 之间,默认值为 5。

  • flags: 用于定义函数操作的标志。目前常用的标志是 cv2.CASCADE_SCALE_IMAGE,表示对图像进行缩放。

  • minSize: 检测对象的最小尺寸。如果提供此参数,只有大于这个尺寸的对象才会被检测到。该参数用于过滤过小的检测区域,减少误检。

  • maxSize: 检测对象的最大尺寸。如果提供此参数,只有小于这个尺寸的对象才会被检测到。这个参数主要用于过滤掉过大的对象。

 圈出被识别物体,打印出坐标值

for (x,y,w,h) in faces:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
    roi_gray = gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    print (int(x+w/2), int(y+h/2))

🔚6、结语

博文到此结束,写得模糊或者有误之处,欢迎小伙伴留言讨论与批评

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Serial number V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值