连续自然数和
题目描述
对一个给定的正整数 M M M,求出所有的连续的正整数段(每一段至少有两个数),这些连续的自然数段中的全部数之和为 M M M。
例子: 1998 + 1999 + 2000 + 2001 + 2002 = 10000 1998+1999+2000+2001+2002 = 10000 1998+1999+2000+2001+2002=10000,所以从 1998 1998 1998 到 2002 2002 2002 的一个自然数段为 M = 10000 M=10000 M=10000 的一个解。
输入格式
包含一个整数的单独一行给出 M M M 的值( 10 ≤ M ≤ 2 , 000 , 000 10 \le M \le 2,000,000 10≤M≤2,000,000)。
输出格式
每行两个正整数,给出一个满足条件的连续正整数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。
样例 #1
样例输入 #1
10000
样例输出 #1
18 142
297 328
388 412
1998 2002
题目解析
代码内容
// #include <iostream>
// #include <algorithm>
// #include <vector>//容器,存数组的数,表数组的长度
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e4;
ll a[N],s[N];
int main()
{
ll m;
cin>>m;
//(l+r)(r-l+1)=2*m
//k1=r-l+1
//k2=l+r
//枚举k1(注意是k1>1而不是k1>=1)
for(ll k1=sqrt(2*m);k1>1;k1--)
{
ll k2=2*m/k1;//k1*k2=2*m
//如果K2是整数而且与K1一奇一偶
if(2*m%k1==0&&(k1+k2)%2==1)
{
int k2=2*m/k1;
ll l,r;
l=(k2-k1+1)/2;
r=(k1+k2-1)/2;
cout<<l<<" "<<r<<endl;
}
}
return 0;
}