有理数取余(快速幂,费马定理 或 扩展欧几里得算法)

【模板】有理数取余(快速幂,费马定理 或 扩展欧几里得算法)

题目描述

给出一个有理数 c = a b c=\frac{a}{b} c=ba,求 c   m o d   19260817 c \bmod 19260817 cmod19260817 的值。

这个值被定义为 b x ≡ a ( m o d 19260817 ) bx\equiv a\pmod{19260817} bxa(mod19260817) 的解。

输入格式

一共两行。

第一行,一个整数 a a a
第二行,一个整数 b b b

输出格式

一个整数,代表求余后的结果。如果无解,输出 Angry!

样例 #1

样例输入 #1

233
666

样例输出 #1

18595654

提示说明

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

特别注意 b ∗ x ≡ 1 ( m o d p ) b*x\equiv 1\pmod{p} bx1(modp) (只对于p是质数)

由费马定理得: b p − 1 ≡ 1 ( m o d p ) b^{p-1}\equiv 1\pmod{p} bp11(modp)(p为质数)
即: b ∗ b p − 2 ≡ 1 ( m o d p ) b*b^{p-2}\equiv 1\pmod{p} bbp21(modp)
得: x = b p − 2 ( m o d p ) x = b^{p-2} \pmod{p} x=bp2(modp);

对于所有数据,保证 0 ≤ a ≤ 1 0 10001 0\leq a \leq 10^{10001} 0a1010001 1 ≤ b ≤ 1 0 10001 1 \leq b \leq 10^{10001} 1b1010001,且 a , b a, b a,b 不同时是 19260817 19260817 19260817 的倍数。

代码内容

  • 快速幂,费马定理
// #include <iostream>
// #include <algorithm>
// #include <cstring>
// #include <stack>//栈
// #include <deque>//队列
// #include <queue>//堆/优先队列
// #include <map>//映射
// #include <unordered_map>//哈希表
// #include <vector>//容器,存数组的数,表数组的长度
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const ll p=19260817;

//快读(分字符读入)
ll getint()
{
    ll res=0,ch=getchar();
    while(!isdigit(ch)&&ch!=EOF)
        ch=getchar();
    while(isdigit(ch))
    {
        res=(res<<3)+(res<<1)+(ch-'0');
        res%=p;//取模p;
        ch=getchar();
    }
    return res;
}

ll qmi(ll a,ll b,ll p)
{
    //当b = 0,p = 1时
    //①不 % p ,结果是 1
    //② % p ,结果是 0(正确答案)
    ll res=1%p;//注意:5 0 1
    while(b)
    {
        if(b&1) res=res*a%p;
        a=a*a%p;
        b>>=1;//右移 1 位
    }
    return res;
}

int main()
{
    ll a,b;//快读(分字符读入)
    a=getint();
    b=getint();
    
    if(!b)
    {
        cout<<""<<endl;
        return 0;
    }

    //b * x ≡ 1 (mod p)//乘法逆元
    //b^{p-1} ≡ 1 (mod p)//费马定理
    //b * b^{p-2} ≡ 1 (mod p)
    //(b*x)模 p 余 1
    //x = b^{p-2} (mod p);
    //res = x

    //(p 为质数,即 a 与模数 p 互质)
    ll res=a*qmi(b,p-2,p);
    //非负整数
    cout<<(res%p+p)%p<<endl;
    return 0;
}
  • 扩展欧几里得算法
// #include <iostream>
// #include <algorithm>
// #include <cstring>
// #include <stack>//栈
// #include <deque>//队列
// #include <queue>//堆/优先队列
// #include <map>//映射
// #include <unordered_map>//哈希表
// #include <vector>//容器,存数组的数,表数组的长度
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const ll p=19260817;

//快读(分字符读入)
ll getint()
{
    ll res=0,ch=getchar();
    while(!isdigit(ch)&&ch!=EOF)
        ch=getchar();
    while(isdigit(ch))
    {
        res=(res<<3)+(res<<1)+(ch-'0');
        res%=p;//取模p;
        ch=getchar();
    }
    return res;
}

//扩展欧几里得算法(裴蜀定理)
//根据费马定理,任意正整数a, b都存在整数x, y
//使得ax + by = gcd(a, b)
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(!b)
    {
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,y,x);
    y-=a/b*x;
}

int main()
{
    ll a,b;//快读(分字符读入)
    a=getint();
    b=getint();
    
    if(!b)
    {
        cout<<""<<endl;
        return 0;
    }

    ll x,y;
    //扩展欧几里得算法
    //b*x≡1(mod p)
    //b*x=p*y+1
    /*b*x+p*y=1*/
    exgcd(b,p,x,y);
    
    //(p 为质数,即 a 与模数 p 互质)
    //ax + by = gcd(a, b) = d = 1
    //ll res=a*x*(1/d)=a*x
    ll res=a*x;
    //非负整数
    cout<<(res%p+p)%p<<endl;
    return 0;
}
  • 21
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慧狗仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值