Acwing基础算法 788逆序对的数量

 给定一个长度为 n𝑛 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i𝑖 个和第 j𝑗 个元素,如果满足 i<j𝑖<𝑗 且 a[i]>a[j]𝑎[𝑖]>𝑎[𝑗],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n𝑛,表示数列的长度。

第二行包含 n𝑛 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1≤n≤1000001≤𝑛≤100000,
数列中的元素的取值范围 [1,109][1,109]。

输入样例:
6
2 3 4 5 6 1
输出样例:
5
 代码
#include <iostream>
using namespace std;
const int N = 100010;
int a[N];
int temp[N];

long long find(int a[], int l, int r){
if(l >= r) return 0;
int mid = l + (r - l >> 1); //计算子数组的中间索引
long long res = 0;

res += find(a, l, mid);
res += find(a, mid + 1, r);

int i = l, j = mid + 1, k = 0;
while(i <= mid && j <= r){ //左右开工(分两半)
if(a[i] <= a[j]) temp[k++] = a[i++]; //正常排序
else
{
temp[k++] = a[j++];
res += mid - i + 1; //出现逆序数 这个位置后面的数字也是逆序数
}
}

while(i <= mid) temp[k++] = a[i++]; //处理最后剩余的两一个数
while(j <= r) temp[k++] = a[j++];

for(i = l,k = 0;i <= r;i++) //数据回归到原本的a数组
a[i] = temp[k++];
return res;


}

int main(){
int n;
cin >> n;
for(int i = 0; i < n;i++){
cin >> a[i];
}
cout << find(a, 0 ,n - 1);
}

/*

用longlong为了防止逆序数非常大 用int也行

*/

注:

归并的一种应用,将数组分块,左边数组比右边大的时候,左边后边的数字也一定比右边大(归并了以后)

排序完成后,要回归到原来的a数组进行下一步归并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值