Stable Diffusion 全网最详细超写实人像制作教程(附模型)

今天给大家介绍的这个皮肤质感调节神器,绝对能让你的作品更上一层楼!

废话不多说,咱们先来看看这个神器的效果!

图片

瞧瞧这效果!左边是处理前,右边是处理后。哇塞,这也太厉害了吧!皮肤质感立刻就上去了,细节也丰富了不少。是不是感觉右边的妹子马上就要从屏幕里跳出来了?就像是相机拍的那种感觉!

那么问题来了,这么神奇的效果是怎么做到的呢?

好了,假设你已经有SD了,接下来我们就需要两个超重要的模型:

【Stable Diffusion 模型】

**
**

majicMIX realistic麦橘写实

这个模型是专门用来生成写实风格的图片。

下载后把它放到"\models\Stable-diffusion"文件夹里就行。

图片

【Lora 模型】林鹤-皮肤质感调整器

它能让AI生成的皮肤告别塑料感,质感立马就上去了。而且还能柔化光源,简直不要太赞!下载后放到"\models\Lora"文件夹里。

图片

记得放好模型后重启一下SD哦,不然可能不会生效。

接下来就是见证奇迹的时刻了!

第一步:文生图 先输入这个魔法咒语:

a girl,realistic

图片

然后设置一下参数:

  • 采样方法选"DPM++ SDE Karras"
  • 迭代步数改成30
  • 高度改成768

图片

  • 总批次数改成3(这样一次能出三张图)

别忘了开启Adetailer面部修复,选择"face_yolov8n.pt"模型。这就像给妹子化妆一样,让她更精致!

点击生成,看,三张美少女就这么出来啦!

第二步:加上皮肤质感 这一步才是重头戏!先选择刚才下载的Lora模型,把权重调到0.8。

图片

然后输入这串看起来很复杂的负面词(相信我,复制粘贴就行):

(NSFW:1.3),teeth,(cleavage),(worst quality:1.65),(low quality:1.2),(normal quality:1.2),low resolution,watermark,dark spots,blemishes,dull eyes,wrong teeth,red teeth,bad tooth,Multiple people,brokeneyelashes,(badhandv4-AnimeIllustDiffusion_badhandv4:1.2),(EasyNegative:1.2),

图片

记得固定一下随机数种子,点击绿色的循环按钮。

图片

最后,找到ControNet,上传刚才生成的其中一张图片。勾选"完美像素模式"和"允许预览",控制类型选"Lineart(线稿)“,预处理器选"lineart_realistic”。这一步是为了让新生成的图和原图保持高度相似,方便我们对比效果。

图片

好啦,再次点击生成,看看奇迹发生了没?

在这里插入图片描述

哇哦!有没有被惊艳到?皮肤的质感简直不要太真实,光感也自然多了。脸部的立体感简直就像打了高光似的,美得冒泡!小编我看了都想给自己的脸P一下,哈哈!

总的来说,有了这个皮肤质感的Lora模型,生成出来的图片真的是越来越难分辨是不是AI画的了。而且用起来超级简单,完全是新手友好型啊!就像用美颜相机一样简单,但效果比美颜相机强多了!

图片

这里直接将该软件分享出来给大家吧~

在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

<think>好的,用户想了解扩散模型中常用的具体模型,特别是Stable Diffusion相关的。我需要先回忆一下之前提供的引用内容。引用[1]提到Stable Diffusion有不同的模型,各插件有不同的功能。引用[2]详细介绍了官方的基础模型,也就是底膜,其他模型都是基于它训练的。引用[3]提到Lora模型和微调模型,比如ChilloutMix可能属于这类。引用[4]则是具体模型的下载链接,比如inpaint anything用的模型。 首先,我需要整理这些信息,确定主要的模型类型。基础模型如SD 1.5和2.1是必须提到的,这是官方发布的。然后是风格化模型,比如DreamShaper和Anything-V3,这些是基于底膜调整的。接着是专门用途的模型,比如Waifu Diffusion针对动漫,Realistic Vision追求真实感。微调模型中的Lora模型和Dreambooth技术也需要解释,可能还要提到ChilloutMix在人物生成上的应用。另外,引用[3]提到的Inpaint Anything属于图像修复类,应该放在应用模型中。 用户的问题是关于常用的diffusion模型,所以需要覆盖不同类型的模型,并举例说明。同时要确保按照系统指令使用正确的LaTeX格式,不过这里可能数学公式不多,但需要注意变量用$符号。回答结构要清晰,分点列出,每个模型类型下举例子,并上引用标记。后生成相关问题,比如应用场景、选择方法、训练差异等。 需要检查是否有遗漏的重要模型,或者是否有混淆的地方。比如,底膜和微调模型的关系要讲清楚,确保用户明白基础模型和其他衍生模型的区别。此外,引用[4]提到的inpaint anything模型属于具体应用,需要明确说明其用途。后,生成的问题要相关,帮助用户进一步探索。</think>在扩散模型领域,尤其是$Stable\ Diffusion$生态中,常用的模型可分为以下几类: ### 一、基础模型(底膜) 1. **SD 1.5/2.1** 由Stable Diffusion官方团队开发的基础模型,文件大小约4-7GB,支持文本生成图像的核心功能。后续各类风格化模型均基于此训练[^2] 2. **SDXL** 2023年发布的升级版本,显著提升图像分辨率和细节表现,模型体积达13GB,需要更高显存支持 ### 二、风格化模型 1. **DreamShaper** 擅长艺术风格渲染,可将普通照片转化为油画/水彩效果 $$ \text{输出} = f_{\theta}(x_t,t) \quad \text{通过风格参数}\theta\ \text{控制} $$ 2. **Anything-V3** 专攻二次元动漫风格,支持复杂角色设计,文件约7GB[^3] ### 三、专用领域模型 | 模型名称 | 特点 | 应用场景 | |-------------------|-----------------------------|-------------------| | Waifu Diffusion | 日系动漫风格优化 | 角色设计/插画 | | Realistic Vision | 写实人像生成 | 摄影/电商 | | OpenJourney | 艺术创作增强 | 概念设计 | ### 四、微调模型 1. **Lora模型** 小型适配器模型(约144MB),通过低秩分解技术实现特定风格迁移,如汉服风格模型 2. **Dreambooth** 个性化微调技术,可在基础模型上注入新概念(如特定人物形象),训练时间约15-30分钟 ### 五、应用型模型 - **Inpaint Anything**:图像修复专用,支持擦除/替换指定区域[^4] - **ControlNet**:通过边缘检测/深度图等控制生成过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值