【Stable Diffusion】ComfyUI 基础教程-环境部署和插件安装

ComfyUI为Stable
Diffusion提供了一个强大的节点流程操作界面,带来了更多的自由度和可复现性,同时降低了显存要求。对于那些希望深入了解和利用Stable
Diffusion技术的用户来说,是一个不可多得的选择。(但节点式的工作流也提高了一部分使用门槛。)

在这里插入图片描述
有需要comfyui整合包以及提示词插件,可以扫描下方,免费获取

在这里插入图片描述

1.下载和安装ComfyUI

1. 首先从官方的github连接上找到最新的release包,下载解压即可使用:**(注意不会使用的同学可以文末自行扫描获取)**

在这里插入图片描述

2. 点击进入Releases,点击下面的"Download link with stable pythorch 2.1 cu121"下载安装包。

在这里插入图片描述

解压安装包到合适的位置,打开文件夹我们可以看到“run_nvidia_gpu”,双击就能启动
ComfyUI 。

在这里插入图片描述

注意:初始安装中不包含任何模型和插件,

2.配置模型、LORA

ComfyUI虽然自带了pytorch和stable diffusion环境,但是不包括模型,所以需要将模型放置到ComfyUI对应目录中:

1. 大模型应放入

“ComfyUI_windows_portable\ComfyUI\models\checkpoints”,

2. VAE模型放入

“ComfyUI_windows_portable\ComfyUI\models/vae”,

3. Lora模型放入

“ComfyUI_windows_portable\ComfyUI\models/loras”。

在这里插入图片描述

如果你本地电脑中有使用过WebUI,那么你的模型文件通常是放在stable-diffusion-
webui目录下的,复制过来就会很浪费空间,所以ComfyUI的作者提供了使ComfyUI和Web UI共享相同的模型,以避免重复拷贝大量模型文件.

在这里插入图片描述

2.用记事本打开extra_model_paths.yaml文件,替换你本地webUI的路径地址:把里面 base_path的路径改成你的 webui
的地址。比如我的是“F:\novelai-webui-aki-v3A”

在这里插入图片描述

3.controlnet地址需修改成WEBUI的 controlnet 模型安装目录,“extensions\sd-webui-
controlnet\models”。启动ComfyUI就可以在模型栏读取到本地模型了:

在这里插入图片描述

3.更新ComfyUI

如果后面需要更新ComfyUI,可以直接使用ComfyUI中的update脚本,不需要重新下载和配置:

在"ComfyUI_windows_portable\update"文件夹中找到"update_comfyui"和"update_comfyui_and_python_dependencies"两个文件。使用"update_comfyui"来更新ComfyUI,等待出现"Done"表新成功。关于配置环境的更新,一般情况下不需要进行.

在这里插入图片描述

4.安装插件

ComfyUI还支持多种插件,它们可以增强用户的体验和功能。

1.辣椒酱的界面汉化:该插件可以汉化ComfyUI的界面,使中文用户更容易理解和操作。

2.提示词风格样式:这个插件允许用户自定义提示词的风格和样式,增加了生成图像的创造性。

3.提示词中文输入:该插件为用户提供中文输入功能,使用户可以更便捷地进行中文文本生成。

你可以通过GitHub下载这些插件并按照说明进行安装。

安装方式:

进入上面需要的插件链接,点击“Code - Download ZIP”进行下载,下载后解压放入

ComfyUI的“ComfyUI_windows_portable\ComfyUI\custom_nodes”中。

在这里插入图片描述
在这里插入图片描述

你可以使用我网盘提供的整合包进行下载,整合包已经集成了常用的插件(比如汉化补丁,插件管理等),省去下载后还要安装插件。(需要的同学可文末自行扫描获取)

在这里插入图片描述

5.ComfyUI的优势和劣势

优势:

1.低显存要求和快速启动:ComfyUI相对于Web UI对显存要求较低,启动速度快,生成图像速度也更快。

2.更高的生成自由度:ComfyUI允许用户自定义工作流程,调整模块连接以获得更灵活的生成效果。

3.与Web UI共享环境和模型:用户可以同时使用ComfyUI和Web UI,并且可以共享模型和环境。

4.可复现性:用户可以构建自己的工作流程,导出流程并与他人分享,同时在出现错误时能够清晰地定位问题。

5.图像还原功能:生成的图片可以还原整个工作流程,模型选择也会被保存。

劣势:

1.操作门槛高:使用ComfyUI需要具备清晰的逻辑和操作理解,相较于Web UI,有一定的学习曲线。

2.生态不如Web UI多:相对于Web UI,ComfyUI的生态系统较小,虽然包含了常用的插件,但Web UI仍然拥有更多可用插件。

  1. 6.生成效果图

  2. 照旧放几张用ComfyUI生成的图片。

在这里插入图片描述
在这里插入图片描述

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我现在要帮助用户解决如何使用ComfyUI下载配置Stable Diffusion的问题。首先,我需要回想一下ComfyUI的基本信息。ComfyUI是一个基于节点工作流的图像生成工具,用户可能对它的安装配置不太熟悉,特别是结合Stable Diffusion模型。 用户提到参考的引用[1]是关于ComfyUI支持Stable Diffusion 3.5 Medium的内容,但用户的问题是如何下载配置。我需要确保步骤准确,并且考虑到用户可能遇到的常见问题,比如模型文件的放置位置或者依赖项的安装。 首先,我应该分步骤说明如何下载ComfyUI。可能的方法包括从GitHub克隆仓库或直接下载压缩包。然后,安装步骤需要涵盖依赖项的安装,比如使用pip安装必要的库。接下来,用户需要下载Stable Diffusion的模型文件,这通常是从Hugging Face或其他官方渠道获取,并放置到正确的目录中,比如ComfyUI/models/checkpoints。 然后,配置部分可能需要启动ComfyUI,并确保模型被正确加载。这里需要提醒用户检查路径是否正确,以及模型文件是否完整。常见问题可能包括模型未显示,这可能是因为路径错误或文件损坏,所以需要给出解决建议。 另外,用户可能对工作流程不熟悉,所以需要简单说明如何添加必要的节点来生成图像,比如加载模型、输入提示词调整参数等步骤。最后,生成相关问题时要围绕ComfyUI的使用、模型管理优化等方面,帮助用户进一步了解相关主题。 需要确保所有步骤清晰,避免使用过于专业的术语,让新手也能理解。同时,检查是否有遗漏的步骤,比如Python环境的准备或者CUDA驱动的安装,这些可能影响ComfyUI的运行。如果有不确定的地方,可能需要建议用户查阅官方文档或社区支持。 总结下来,回答的结构应该是:安装ComfyUI -> 安装依赖 -> 下载模型 -> 配置路径 -> 启动使用 -> 常见问题处理。这样逐步引导用户完成整个过程,并预见到可能的问题点,提供解决方案。</think>### 使用 ComfyUI 下载配置 Stable Diffusion 的分步指南 #### 1. 下载 ComfyUI - **从 GitHub 获取源码** ComfyUI 是一个开源项目,建议从官方仓库下载以获取最新版本: ```bash git clone https://github.com/comfyanonymous/ComfyUI.git ``` 或者直接下载 ZIP 压缩包并解压到本地目录[^1]。 #### 2. 安装依赖项 - **通过 pip 安装必要库** 进入 ComfyUI 目录,安装 Python 依赖: ```bash cd ComfyUI pip install -r requirements.txt ``` 若使用 GPU 加速(推荐),需额外安装 CUDA 版本的 PyTorch: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121 ``` #### 3. 下载 Stable Diffusion 模型 - **获取模型文件** Stable Diffusion 的官方模型(如 `sd_xl_base_1.0.safetensors`)需从 Hugging Face 下载: 1. 访问 [Hugging Face 模型库](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) 2. 下载 `.safetensors` 格式的模型文件 3. 将模型文件放入 `ComfyUI/models/checkpoints/` 目录 #### 4. 配置并启动 ComfyUI - **运行主程序** 执行以下命令启动 Web 界面: ```bash python main.py ``` 默认访问地址为 `http://127.0.0.1:8188`。若需自定义端口,添加 `--port <端口号>` 参数。 #### 5. 验证模型加载 - **检查模型是否生效** 在 Web 界面中: 1. 右键点击画布 → 选择 `Load Checkpoint` 节点 2. 查看下拉列表中是否包含已下载的模型名称 3. 若未显示,检查模型文件路径格式是否正确 #### 6. 生成第一张图像 - **构建基础工作流** 按以下节点流程操作: ``` Load Checkpoint → CLIP Text Encode (Prompt) → KSampler → VAEDecode → Save Image ``` 输入提示词(如 "a cat on a sofa")后点击 `Queue Prompt` 生成图像。 --- ### 常见问题解决 1. **模型未显示在列表中** - 确认模型文件位于 `models/checkpoints/` 目录 - 检查文件扩展名是否为 `.ckpt` 或 `.safetensors` - 重启 ComfyUI 服务 2. **GPU 未调用** - 确认已安装 CUDA 版本的 PyTorch - 在启动命令后添加 `--cuda-device 0` 3. **依赖项安装失败** - 使用 Python 3.10 或更高版本 - 尝试 `pip install --upgrade pip` 更新 pip ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值