有借鉴加着自己的经历原文链接:https://blog.csdn.net/chenpy/article/details/121397687
首先谈及安装labelme
labelme的安装需要稳定的WiFi环境,而且经常会有一些报错,这里我总结了网上所有的方法来应对所有的报错
首先会出现的报错是网络环境不稳定,导致你下载失败
指令:conda create -n labelme python=3.8
报错:ProxyError: Conda cannot proceed due to an error in your proxy configuration.
原因:这种bug大多数都出现在企业服务器或者电脑上,代理设置导致
解决:在系统网络设置中关闭代理服务器 并 连接个人手机热点,两个条件都要满足,用自己的热点来提供稳定环境
也可能会出现你的pip和conda根本下载不了的问题
我就是这样,然后我直接重新创了一个conda环境,专门用于labelme的标注的Python环境
所以我觉得可能是有些Python环境根本不支持labelme
综上所述,为了让大家更节约时间,不要那么头疼,你就直接按我下面的方法一步一步跟着来一波执行就行了,不要自己去尝试歪路了
先创建一个新的anaconda Python环境
conda create -n labelme python=3.6
然后激活一次
conda init
然后进入到那个新环境
conda activate labelme
步骤1.安装pyqt5指令:conda install pyqt 或 pip install pyqt
conda和pip互补使用,玄学
步骤2.安装pillow指令:conda install pillow 或 pip install pillow
步骤3.安装labelme
指令:conda install labelme==4.5.13 或 pip install labelme==4.5.13
注意版本
一旦下载失败就重新下载,重新执行命令就行,我装labelme执行了三四次pip install labelme==4.5.13
这时候就可以正常使用了,但是记住labelme的保存路径就得和你照片的地址放一起,但不用一个目录,可以放不同目录
不然报错labelme_json_to_dataset ValueError: path is on mount 'D:',start on C
接下来讲讲怎么批量转换json,不然你做pose姿态识别得json_to_dataset转换几万次
我最常用的是方法二(成功最快最简单)
1.方法1
1.原理
默认安装的 Labelme 有个可以单个转换 json 标注文件成 dataset 的工具叫做labelme_json_to_dataset.exe,在 $python目录\Scripts 下,例如:
Anaconda虚拟环境 :
D:\anaconda3\envs\labelme\Scripts\labelme_jso