SPM批量处理

本文介绍了使用SPM进行单个或多个被试rsHRF分析时的批量处理方法,包括直接通过batch文件和MATLAB脚本自动化处理。重点强调了错误排查和MATLAB基础知识在批量处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于单个被试来说,我们可以选择SPM中的batch(分批处理),在batch editor中SPM选项里找到我们要进行的处理过程,比如可以进行temporal时间层矫正,spatial头动校正,stats中可以进行统计的相关操作,tools中包括我们研究需要的rsHRF。

4a8ebe8f8a694c27b9ed5c405fa5d7ae.png 

我们要分析的过程都会呈现在左边这里,但本次实验的后三步相关性分析需要用到所有被试的结果,所以我们还是选择先批量处理多个被试的rsHRF。对多个被试数据进行rsHRF的批量处理,可以有下面这两种方法。首先第一种是直接通过SPM运行batch文件。直接点绿色运行标志旁边的保存键,保存.m文件。再重新打开这个界面,在batch中找到basic,选择运行 batch jobs, 就可以运行之前保存的rsHRF模型。处理几个被试,就点几次。在每一个batch jobs里都要选择一下我们运行的模型和输入数据,设置完成后就可以运行了。

1d26b2cd0d30484380d893da858c182e.png

### 使用SPM12进行MRI数据处理 #### 准备工作 为了使用SPM12处理MRI数据,首先需要安装MATLAB以及SPM12工具箱。确保已下载并解压SPM12至适当位置,并将其路径添加到MATLAB环境中。 #### 数据导入与初始化 启动MATLAB后,在命令窗口输入`spm`以打开SPM图形用户界面(GUI)[^1]。通过该界面可以访问各种预处理选项。 #### 功能像重定位(Realignment) 选择`fmri`进入功能磁共振成像流程。执行'Realign: Estimate & Reslice'步骤能够校正扫描过程中可能产生的头部运动伪影。完成后会在Matlab控制台显示完成消息,并生成描述各时间节点位移量的文本文件[^4]。 #### 结构像与功能像配准(Coregistration) 返回主菜单选取Coregister功能项实现T1加权结构性图像同功能性序列之间的空间对齐。这一过程有助于后续分割及标准化操作更加精准地映射个体差异性脑区特征[^2]. #### 批量化脚本编写 对于大规模样本集而言,手动逐例调整参数效率低下。因此建议采用批模式(batch mode),即预先设定好一系列固定指令集合形成.m脚本形式保存下来以便重复调用。具体做法可参照官方文档说明或第三方经验分享文章中的实例代码片段[^3]: ```matlab % 创建新的batch作业对象 job = spm_jobman('initcfg'); % 添加任务节点... job.nodes{end+1} = {'Realign', ... 'estwrite', struct('eoptions', struct(...))}; % 提交批量任务给SPM引擎执行 spm_jobman('run', job); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值