基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

一、ASO-BP算法概述

1.ASO原子探索算法

原子搜索算法(ASO)是一种受微观分子动力学启发的智能优化算法,于2019年提出。在ASO中,每个原子在搜索空间中的位置代表一个与原子质量相对应的解,较好的解表示较重的质量。种群中的所有原子会根据彼此之间的距离相互吸引或排斥,且较轻的原子会向较重的原子移动。通过计算Lennard-Jones势能,并利用加速度与速度随距离的关系来更新原子的位置,ASO算法能够有效地求解优化问题。

2.BP神经网络(BP)

BP神经网络是一种具有三层或三层以上的多层神经网络,包括输入层、隐含层和输出层。每一层都由若干个神经元组成,神经元之间通过加权和的方式传递信号,并经过激活函数进行非线性变换。BP神经网络的训练过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入信号从输入层逐层传递到输出层;在反向传播阶段,根据输出误差调整各层之间的连接权重,使误差逐步减小。

3.ASO-BP神经网络回归预测方法

ASO-BP神经网络回归预测方法的基本思路如下:

(1)初始化:初始化BP神经网络的权重和偏置。初始化原子的位置(即神经网络的参数)。

(2)适应度函数:使用BP神经网络在训练集上进行训练,并计算验证集上的误差(如均方误差MSE)作为适应度值。

(3)速度和位置更新:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

(4)迭代:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。

(5)结果输出:使用最优原子的权重和阈值(即最优参数集)的BP神经网络进行预测。

二、实验步骤

ASO-BP神经网络回归预测步骤:

1.数据清洗:去除缺失值和异常值。

2.特征选择:根据相关性分析选择对预测结果影响显著的特征。

3.数据归一化:将特征值缩放到同一量纲,提高训练效率。

4.定义BP神经网络结构:确定输入层、隐藏层(数量、神经元数)、输出层的结构。

5.初始化:设置ASO参数,包括初始种群规模、最大进化代数、自变量个数(即BP神经网络的权值和阈值总数)、自变量上下限等。

6.评估适应度:使用训练集数据训练BP神经网络,并计算训练集和测试集的均方误差作为适应度值。适应度值越小,表示解的质量越好。

7.更新原子位置:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

8.迭代优化重复步骤6和7,直到达到最大进化代数或满足其他停止条件。

9.模型评估:在训练完成后,评估模型在训练集和测试集上的性能,使用不同的指标(如R²、MAE、MBE、RMSE、MAPE)。

10.结果可视化:绘制训练集和测试集的预测值与真实值的对比图。

 

代码部分

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import torch.optim as optim
import matplotlib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False

# 导入数据
data = pd.read_csv('数据集.csv').values

# 划分训练集和测试集
np.random.seed(0)
temp = np.random.permutation(len(data))

P_train = data[temp[:80], :7]
T_train = data[temp[:80], 7]
P_test = data[temp[80:], :7]
T_test = data[temp[80:], 7]

# 数据归一化
scaler_input = MinMaxScaler(feature_range=(0, 1))
scaler_output = MinMaxScaler(feature_range=(0, 1))

p_train = scaler_input.fit_transform(P_train)
p_test = scaler_input.transform(P_test)

t_train = scaler_output.fit_transform(T_train.reshape(-1, 1)).ravel()
t_test = scaler_output.transform(T_test.reshape(-1, 1)).ravel()
# 转换为 PyTorch 张量
p_train = torch.tensor(p_train, dtype=torch.float32).to(device)
t_train = torch.tensor(t_train, dtype=torch.float32).view(-1, 1).to(device)
p_test = torch.tensor(p_test, dtype=torch.float32).to(device)
t_test = torch.tensor(t_test, dtype=torch.float32).view(-1, 1).to(device)

# 初始化网络
class BPNetwork(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(BPNetwork, self).__init__()
        self.hidden = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()
        self.output = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        x = self.relu(self.hidden(x))
        x = self.output(x)
        return x


input_size = p_train.shape[1]
hidden_size = 11
output_size = t_train.shape[1]

bp_net = BPNetwork(input_size, hidden_size, output_size).to(device)

# 损失函数
criterion = nn.MSELoss()

# 定义适应度函数(误差函数)
def fitness_function(network, data, target):
    network.eval()
    with torch.no_grad():
        output = network(data)
        loss_fn = nn.MSELoss()
        loss = loss_fn(output, target)
    return loss.item()

四、实验与结果

1.数据准备

为了验证ASO优化BP神经网络的有效性,本文采用某数据集进行实验。下面所示本次采用的数据集(部分)。

 

2.结果分析

实验结果表明,经过ASO优化后的BP神经网络在预测精度上显著优于未经优化的BP神经网络。具体地,优化后的BP神经网络在测试集上的均方误差降低了约20%,表明ASO算法能够有效地提升BP神经网络的预测性能。

(1) 训练集预测值和真实值对比结果 

 

(2) 测试集预测值和真实值对比结果  

 

(3) 训练集线性回归图 

 

(4) 测试集线性回归图 

 

(5) 其他性能计算 

 

五、结论

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ASO-BP神经网络模型是一种改进的BP神经网络模型,其主要特点是具有自适应学习率和动量项的特性,可以有效地提高神经网络的收敛速度和精度。下面是一个简单的C语言实现ASO-BP神经网络模型的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> #define INPUT_SIZE 2 // 输入层神经元个数 #define HIDDEN_SIZE 2 // 隐层神经元个数 #define OUTPUT_SIZE 1 // 输出层神经元个数 #define TRAIN_SIZE 4 // 训练数据个数 #define EPOCH_NUM 10000 // 迭代次数 #define LEARNING_RATE 0.8 // 学习率 #define MOMENTUM 0.3 // 动量项 // 定义激活函数sigmoid double sigmoid(double x) { return 1.0 / (1.0 + exp(-x)); } // 定义ASO-BP神经网络模型 void aso_bp(double input[TRAIN_SIZE][INPUT_SIZE], double output[TRAIN_SIZE][OUTPUT_SIZE], double w1[INPUT_SIZE][HIDDEN_SIZE], double w2[HIDDEN_SIZE][OUTPUT_SIZE]) { double hidden[HIDDEN_SIZE]; double delta_output[OUTPUT_SIZE]; double delta_hidden[HIDDEN_SIZE]; double o[OUTPUT_SIZE]; double h[HIDDEN_SIZE]; double delta_w2[HIDDEN_SIZE][OUTPUT_SIZE]; double delta_w1[INPUT_SIZE][HIDDEN_SIZE]; double input_sum; double output_sum; double error; int epoch, i, j, k; // 初始化权重矩阵w1和w2 for (i = 0; i < INPUT_SIZE; i++) { for (j = 0; j < HIDDEN_SIZE; j++) { w1[i][j] = (double)rand() / RAND_MAX - 0.5; } } for (i = 0; i < HIDDEN_SIZE; i++) { for (j = 0; j < OUTPUT_SIZE; j++) { w2[i][j] = (double)rand() / RAND_MAX - 0.5; } } // 迭代训练 for (epoch = 0; epoch < EPOCH_NUM; epoch++) { for (k = 0; k < TRAIN_SIZE; k++) { // 前向传播计算输出 for (i = 0; i < HIDDEN_SIZE; i++) { input_sum = 0.0; for (j = 0; j < INPUT_SIZE; j++) { input_sum += input[k][j] * w1[j][i]; } h[i] = sigmoid(input_sum); } for (i = 0; i < OUTPUT_SIZE; i++) { output_sum = 0.0; for (j = 0; j < HIDDEN_SIZE; j++) { output_sum += h[j] * w2[j][i]; } o[i] = sigmoid(output_sum); } // 反向传播计算误差并更新权重矩阵 for (i = 0; i < OUTPUT_SIZE; i++) { error = output[k][i] - o[i]; delta_output[i] = error * o[i] * (1.0 - o[i]); for (j = 0; j < HIDDEN_SIZE; j++) { delta_w2[j][i] = LEARNING_RATE * delta_output[i] * h[j] + MOMENTUM * delta_w2[j][i]; w2[j][i] += delta_w2[j][i]; } } for (i = 0; i < HIDDEN_SIZE; i++) { delta_hidden[i] = 0.0; for (j = 0; j < OUTPUT_SIZE; j++) { delta_hidden[i] += delta_output[j] * w2[i][j]; } delta_hidden[i] *= h[i] * (1.0 - h[i]); for (j = 0; j < INPUT_SIZE; j++) { delta_w1[j][i] = LEARNING_RATE * delta_hidden[i] * input[k][j] + MOMENTUM * delta_w1[j][i]; w1[j][i] += delta_w1[j][i]; } } } } } int main() { // 训练数据 double input[TRAIN_SIZE][INPUT_SIZE] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; double output[TRAIN_SIZE][OUTPUT_SIZE] = {{0}, {1}, {1}, {0}}; // 权重矩阵 double w1[INPUT_SIZE][HIDDEN_SIZE]; double w2[HIDDEN_SIZE][OUTPUT_SIZE]; // 训练ASO-BP神经网络模型 aso_bp(input, output, w1, w2); // 测试ASO-BP神经网络模型 double test_input[TRAIN_SIZE][INPUT_SIZE] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}}; double test_output[TRAIN_SIZE][OUTPUT_SIZE]; int i, j, k; for (k = 0; k < TRAIN_SIZE; k++) { for (i = 0; i < HIDDEN_SIZE; i++) { double input_sum = 0.0; for (j = 0; j < INPUT_SIZE; j++) { input_sum += test_input[k][j] * w1[j][i]; } double h = sigmoid(input_sum); double output_sum = 0.0; for (j = 0; j < OUTPUT_SIZE; j++) { output_sum += h * w2[i][j]; } test_output[k][i] = sigmoid(output_sum); printf("%f ", test_output[k][i]); } printf("\n"); } return 0; } ``` 这个示例代码实现了一个ASO-BP神经网络模型,可以用于解决异或逻辑运算问题。其中,`aso_bp`函数用于训练ASO-BP神经网络模型,`main`函数用于测试ASO-BP神经网络模型。在测试过程中,将训练数据输入神经网络模型,输出结果并打印。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值