基于GWO-BP神经网络回归预测的Python代码实现

在数据分析和预测领域,寻找高效的预测模型一直是研究热点。本文将介绍一种基于灰狼优化算法(Grey Wolf Optimizer, GWO)和反向传播(Backpropagation, BP)神经网络的数据回归预测模型GWO-BP。通过结合GWO的全局搜索能力和BP神经网络的非线性建模能力,GWO-BP模型能够显著提升预测精度和收敛速度。

一、GWO-BP算法概述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值