C语言关于最大公因数的求法

 最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。

下面介绍利用辗转相除法求出最大公因数。

辗转相除法:又名欧几里德算法(Euclidean algorithm),是求两个正整数之最大公约数的算法。它是已知最古老的算法, 其可追溯至公元前300年前。

它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。(百度)

举个例子:比如求24和18的最大公因数,先让24/18,得到1余6,再将18作为被除数除以6,余数为0,既然余数为0了,那么6就是24和18的最大公约数,这招就叫做辗转相除法。

有了理论,接下来用代码去实现辗转相除法。如果把被除数记为a,除数记为b,得到的余数记为c,再根据上述例子就可以得到c=a%b,a=b,b=c......直到c=0。

#include <stdio.h>
int main()
{
	int a = 24;
	int b = 18;
	int c = a % b;
	while (c)
	{
		a = b;
		b = c;
		c = a % b;
	}
	printf("%d", b);
	return 0;
}

 如果a=18,b=24的话,结果也不会怎样,因为18%24=18,下一次就会交换回来,a=24,b=18。

最后再完善一下:

#include <stdio.h>
int main()
{
	int a = 18;
	int b = 24;
	scanf("%d %d", &a, &b);
	int c = a % b;
	while (c)
	{
		a = b;
		b = c;
		c = a % b;
	}
	printf("%d", b);
	return 0;
}

 

over. 

 

 

### C语言实现计算最大公因数 在C语言中,可以利用多种方法来求解两个整数的最大公因数(GCD),其中最常用的是辗转相除法(也称为欧几里得算法)。此算法基于这样的原理:两个整数`a`和`b`(假设`a>b`) 的最大公约数等于`b` 和 `a%b` 的最大公约数。 下面是一个使用辗转相除法的简单例子: ```c #include <stdio.h> int gcd(int a, int b){ if(b==0) return a; else return gcd(b,a%b); } int main(){ int num1=0,num2=0; printf("请输入两个正整数: "); scanf("%d%d",&num1,&num2); // 调用gcd函数获取最大公约数 printf("最大公约数为:%d\n",gcd(num1,num2)); return 0; } ``` 上述代码定义了一个名为`gcd()`的递归函数用于执行实际运算,并通过`main()` 函数接收用户输入的数据[^1]。 除了递归方式外,还可以采用循环结构来进行迭代处理。这里给出另一种非递归版本的例子: ```c #include <stdio.h> int main() { int m = 0; int n = 0; int tmp = 0; printf("请输入两个整数: "); scanf("%d %d", &m, &n); while ((tmp = m % n) != 0) { m = n; n = tmp; } printf("最大公约数为:%d\n", n); return 0; } ``` 这段程序同样实现了相同的逻辑——不断取模直到余数为零为止;不同之处在于它不是通过调用自身而是借助于while 循环完成这一过程[^2]。 对于更简单的场景或者当不想引入额外复杂度的时候,也可以考虑暴力穷举的方式寻找最大公因数。这种方法是从较小的那个数开始向下尝试每一个可能的因素直至找到共同因子最大的那个位置停止。不过由于效率较低,在大多数情况下不推荐作为首选方案[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值