人工智能背景下催生出了众多新兴岗位

技术研发类

  1. 人工智能工程师:负责开发和研究人工智能技术,包括机器学习工程师、深度学习工程师等细分岗位。机器学习工程师专注于设计和实现各种机器学习算法和模型,让计算机能够从数据中学习和预测。深度学习工程师则主要利用神经网络等深度学习技术,解决图像识别、语音识别、自然语言处理等复杂问题。
  2. 自然语言处理(NLP)工程师:致力于开发能够理解和生成人类语言的AI系统,实现语音识别、文本理解、机器翻译、智能客服等功能。需要具备良好的数学和统计学基础,熟悉NLP算法和技术,以及较强的编程能力。
  3. 数据科学家:不仅要负责收集、清洗和整理大量的数据,还要运用统计学、数学和计算机科学的知识,通过数据分析和建模,挖掘数据背后的价值和规律,为企业决策提供支持。 ### 应用设计类
  4. AI产品经理:将AI技术与市场需求相结合,负责人工智能产品的规划、开发、推广和管理。需要具备良好的产品管理能力,熟悉AI技术和应用场景,能够识别市场需求,制定产品战略,并协调各方资源推动产品的落地和迭代。
  5. 智能系统设计师:开发和设计集成人工智能的软件和硬件系统,如物联网设备、智能家居系统等。需要综合考虑硬件和软件的协同工作,以及人工智能算法在系统中的应用,以提供智能化的产品和服务。 -
  6. 人机交互设计师:专注于促进人工智能系统与使用者之间的无缝沟通和交互。结合以用户为中心的设计、认知心理学和交互设计方面的专业知识,进行用户研究、创建线框和原型,确保人工智能系统的界面和交互设计直观、易用,提升用户体验。

安全伦理类

  1. AI伦理师:关注人工智能系统的道德和社会影响,对人工智能的发展和应用进行伦理评估和指导,提供伦理和法律方面的建议,确保人工智能的发展符合人类的价值观和社会利益。
  2.  AI审计员:负责积极评估AI系统是否存在偏见、错误以及是否符合监管框架。审查人工智能的输出,进行审计并提供改进建议,以保证AI系统的准确性、可靠性和合规性。 -
  3. 网络安全专家:在人工智能时代,随着数字化转型的加速和数据的大量增加,网络安全问题愈发重要。网络安全专家负责保护企业和个人的信息安全,防范黑客攻击、数据泄露等安全威胁,确保人工智能系统和相关数据的安全。

行业应用类

  1. 生成式人工智能系统应用员:随着生成式人工智能的兴起,该岗位负责将生成式人工智能系统应用于各个行业和领域,如内容创作、智能客服、智能营销等,推动人工智能技术在实际业务中的落地和应用。
  2. 智能网联汽车测试员:主要负责对智能网联汽车的各项功能进行测试和验证,包括自动驾驶功能、车联网通信功能、智能座舱系统等。确保智能网联汽车的安全性、可靠性和性能符合相关标准和要求。
  3. 医疗诊断师:借助人工智能算法对医学影像、基因组数据等进行分析,辅助医生进行疾病诊断,提高疾病的早期发现率,减轻医生的工作负担,提升医疗服务的整体效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值