各位 COMFYUI 爱好者,免-费(含组件库 / 案例源码),需要的朋友可以加 AI-AIGC-7744423,备注 ' 论坛 ' 即可领取~"
K采样器是ComfyUI实现AI绘画的核心引擎,掌握其参数逻辑和工作流搭建方法,可大幅提升生成效果控制能力。建议从基础配置开始逐步实验,结合本文参数对照表快速定位问题。更多高阶技巧可参考Civitai平台的案例工作流4。
一、K采样器核心概念与作用
-
技术定义
K采样器(K Sampler)是ComfyUI中负责执行扩散模型逆向降噪过程的核心节点,通过从Stable Diffusion模型中提取噪声规律,将随机潜空间噪声逐步转换为可识别的图像。它是工作流中连接提示词、模型和潜空间的关键模块35。 -
核心功能
二、K采样器使用全流程(保姆级步骤)
1. 基础工作流搭建
-
步骤1:加载K采样器节点
右键点击画布空白处 → 搜索并添加KSampler
节点。 -
步骤2:连接潜空间
- 添加
Empty Latent Image
节点生成空潜空间 → 连线至K采样器的latent_image
输入端口3。 - 参数设置:初始分辨率建议设为512x512(SD1.5)或1024x1024(SDXL)。
- 添加
-
步骤3:加载模型与提示词
- 将
Checkpoint Loader
节点的大模型输出连接到K采样器的model
端口。 CLIP Text Encode
节点的输出分别连接至K采样器的positive
和negative
端口。
- 将
-
步骤4:解码与输出
添加VAE Decode
节点 → 将K采样器的LATENT
输出连接至此节点 → 最终输出图像。
2. 关键参数详解与设置
参数名 | 推荐值 | 作用说明 |
---|---|---|
steps | 20-30(常规) | 降噪步数,步数越多细节越精细但耗时增加4 |
cfg | 7-9 | 提示词相关性,值越高越贴近描述,过高会导致生硬5 |
sampler | dpmpp_2m或euler | 采样算法类型,dpmpp_2m 适合写实,euler 适合快速生成4 |
scheduler | normal或karras | 噪声调度策略,karras 增强对比度,normal 更柔和5 |
denoise | 1.0(默认) | 降噪强度,降低此值可保留部分原始噪声实现创意效果4 |
3. 进阶使用技巧
- 加速生成方案
- 使用
lcm
采样器 +karras
调度器,步数设为4-8步,cfg值调至2-34。 - 示例参数:
sampler: lcm, steps: 6, cfg: 2.5, scheduler: karras
。
- 使用
- 风格融合控制
- 写实风格:
dpmpp_3m_sde
+exponential
调度器 + steps=305。 - 抽象艺术:
euler_ancestral
+simple
调度器 + denoise=0.7。
- 写实风格:
- 多分辨率适配
- 通过
Latent Upscale
节点提升分辨率 → 连接至第二个K采样器进行细节修复3。
- 通过
三、常见问题与解决方案
- 图像模糊/破碎
- 显存不足报错
- 降低分辨率(如768x768 → 512x512)。
- 启用
--lowvram
启动参数或使用QLoRA优化模型5。
- 风格偏离预期
- 尝试不同
sampler
与scheduler
组合(参考第二节表格)。 - 在负面提示词中添加
low quality, blurry
等约束4。
- 尝试不同