A - ?UPC
思路:我们直接输出S字符串的第一个字符+“UPC”即可
#include<bits/stdc++.h>
using namespace std;
string s;
signed main()
{
cin>>s;
cout<<s[0]<<"UPC";
return 0;
}
B - Heavy Snake
思路:由于数据很小,我们完全可以写一个D*N时间复杂度的代码,每次都去对ai+ti,然后去寻找最大值,然后输出
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,d;
int a[105];
int l[105];
int ans[105];
signed main()
{
cin>>n>>d;
for(int i=1;i<=n;i++)
{
cin>>a[i]>>l[i];
ans[i]=a[i]*l[i];
}
for(int j=1;j<=d;j++)
{
int maxn=0;
for(int i=1;i<=n;i++)
{
maxn=max(ans[i]+(j*a[i]),maxn);
}
cout<<maxn<<"\n";
}
}
D - Coming of Age Celebration
思路: 思路:我们可以去统计,每个人的每个宝石会在第几年耗尽,f[i]表示第i年宝石耗尽的人的个数,然后跑一个前缀和,找到第i年耗尽宝石的个数,然后a[i]+i-1-f[i-1]-(n-i)然后和0去最大值就是当前人拥有宝石的个数
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n;
int a[500005];
int f[2000005];
signed main()
{
cin >> n;
int cnt = 0;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for(int i=1;i<=n;i++)
{
f[i+a[i]+(i-1)-cnt]+=1;
cnt+=f[i];
}
for(int i=1;i<=n;i++)
{
f[i]+=f[i-1];
}
for(int i=1;i<=n;i++)
{
cout<<max(0LL,a[i]+(i-1)-f[i-1]-(n-i))<<" ";
}
return 0;
}
现在来讲一个系列的CEG
C - Various Kagamimochi
思路:倒序遍历,直接用upper_bound去寻找大于当前元素一半的下标,然后-1就是最终结果
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
int a[500005];
signed main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
int ans=0;
for(int i=n;i>=2;i--)
{
int flag=a[i]/2;
int pos=upper_bound(a+1,a+1+n,flag)-a;
ans+=pos-1;
}
cout<<ans;
return 0;
}
E - Simultaneous Kagamimochi
思路:假设我们可以做出来k个叠糕,那么必然是最小的那一部分,和最大的那一部分的叠起来的,因此我们可以去二分k的值,然后去进行一个暴力遍历k,当i>=1&&i<=k时,a[i]*2<=a[n-k+i],一但出现不符合的就返回false,否则返回true,时间复杂度为nlogn,刚好可以
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
int a[500005];
bool check(int k)
{
int flag=1;
for(int i=1;i<=k;i++)
{
int x=a[i+n-k]/2;
if(a[i]>x)
{
flag=0;
}
}
if(flag==1)
return true;
else
return false;
}
signed main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
int l=0,r=n/2;
int ans=0;
while(l<r)
{
int mid=(l+r+1)/2;
if(check(mid))
{
ans=mid;
l=mid;
}
else
{
r=mid-1;
}
}
cout<<ans;
return 0;
}
G - Simultaneous Kagamimochi 2
思路:这题相当于是e题的数据的加强版,相当于问你q个类似于e题的问题,这时候假如还用e题的思路来做那么时间复杂度为q*n*logn,很明显是过不去的,因此我们需要优化一下,q是不能变的,logn的二分也没法继续优化了,因此我们可以选择将那个n优化为O(1)或者说O(logn)级别的时间复杂度,因此我们可以想到用st表去维护,可以实现O(1)时间复杂度的查询
我们的优化想到之后,可以去考虑一下如何去实现,首先我们来分析一下,要满足条件的话,假设我们输入的是L和R,假设我们此时二分的长度k,那么则应该有i>=L&&i<=L+k-1,那么对应则有
a[i]*2<=a[R-k+1-L+i],由c题我们可以知道,我们可以先去求出来每个点的最大的组成叠糕的下标posi,然后去将其变成i-posi,统计与前面的可组成的最大距离(因为如果最大距离,满足了,那么小的距离肯定也能满足形成叠糕),然后用st表去维护一个区间内的最大距离,然后去判断这个距离是否小于后面一段的左端点距离L的距离(标准的比较的点之间的距离),如果小于等于,那么就是可以满足的,否则就是false
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,q;
int a[200005];
int L,R;
int pos[200005];
int st[200005][18];
int check(int l,int r)
{
int k=log2(r-l+1);
return max(st[l][k],st[r-(1<<k)+1][k]);
}
signed main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
int flag=a[i]/2;
int p=upper_bound(a+1,a+1+n,flag)-a-1;
pos[i]=p;
}
for(int i=1;i<=n;i++)
{
st[i][0]=i-pos[i];
}
for(int j=1;j<=17;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
}
cin>>q;
for(int i=1;i<=q;i++)
{
cin>>L>>R;
int l=0;
int r=(R-L+1)/2;
int ans=0;
while(l<r)
{
int mid=(l+r+1)/2;
if(check(R-mid+1,R)<=R-L+1-mid)
{
ans=mid;
l=mid;
}
else
{
r=mid-1;
}
}
cout<<ans<<"\n";
}
return 0;
}