一只青蛙可以跳上一级台阶,也可以跳上两级台阶。求该青蛙跳上一个n级台阶总共有多少种跳法?
通过找规律发现:青蛙跳上n级台阶的跳法=跳上(n-1)级台阶的跳法+跳上(n-2)级台阶的跳法;俺到这里就惊讶的发现,这不就是斐波那契数列吗?
但为什么是这样的规律呢? 俺也甚是疑惑,于是上网看了大佬们的一些说法,其中一种是这么说的:青蛙跳上n级台阶一共有中跳法,无论青蛙怎么跳,最后跳的那一次无非就两种情况,一种是跳一级台阶,一种是跳两级台阶;
当只剩下一级台阶时:前面的n-1个台阶一共有种跳法
当剩下两级台阶时,前面的n-2个台阶一共有种跳法
这样一看,确实就解决了斐波那契数列和青蛙跳台问题之间的联系:
#include<stdio.h>
int jump(int n)
{
if (n - 1 > 0)
return jump(n - 1) + jump(n - 2);
else
return 1;
}
int main()
{
int n = 0;
scanf("%d", &n);//台阶数
int ret = jump(n);
printf("青蛙跳上%d级台阶一共有%d种跳法", n, ret);
}
因为函数的重复调用,递归明显是一种效率低下的方法;在这里使用循环会好一些!
博客仅作为俺学习过程的记录!