不同博弈情景下策略选择的最优化探索

一:鹰鸽博弈

鹰鸽博弈是博弈论中的一个经典模型,以下是对鹰鸽博弈的具体介绍:

基本策略和行为模式

鹰策略:代表着激进、好斗、具有攻击性的行为方式。在博弈中,选择鹰策略的个体在面对竞争或冲突时会全力以赴、坚决斗争,不轻易退缩,直到取得胜利或者给对手造成重大伤害。这种策略往往需要付出较高的成本,比如在战斗中可能会受伤,但如果获胜,就能获得较高的收益。

鸽策略:象征着温和、妥协、非攻击性的行为方式。选择鸽策略的个体在遇到竞争或冲突时,通常会选择避免正面冲突,以和平的方式解决问题,或者选择退让、分享资源。鸽策略的成本相对较低,因为可以避免激烈的战斗和受伤的风险,但获得的收益也相对较少。

收益情况

当两只鹰相遇时,它们会进行激烈的战斗,由于战斗会带来两败俱伤的结果,所以双方的收益都是负的(比如假定为 - 2)。

当两只鸽子相遇时,它们会共同分享资源,各自获得一定的收益(比如假定为 1)。

当鹰和鸽子相遇时,鸽子会逃走,鹰将独自获得全部资源,鹰的收益较高(比如假定为 2)。

在这个博弈中,玩家可以选择扮演鹰(攻击型)或鸽(和平型)。鹰会争夺资源,但可能受伤;鸽则避免战斗,但可能无法获得资源。

import numpy as np

# 博弈矩阵
payoff_matrix = np.array([[-2, 2], [1, 1]])

# 策略选择函数
def choose_strategy(payoff_matrix, strategy):
    if strategy == "hawk":
        return np.argmax(payoff_matrix[0])
    elif strategy == "dove":
        return np.argmax(payoff_matrix[1])

# 模拟博弈
strategy1 = "hawk"
strategy2 = "dove"
result1 = choose_strategy(payoff_matrix, strategy1)
result2 = choose_strategy(payoff_matrix, strategy2)

print(f"玩家1选择:{strategy1}, 玩家2选择:{strategy2}")
print(f"玩家1的收益:{payoff_matrix[0][result2]}, 玩家2的收益:{payoff_matrix[1][result1]}")

以下是对代码的详细解释:

1:定义博弈矩阵

import numpy as np
payoff_matrix = np.array([[-2, 2], [1, 1]])

这里创建了一个新的二维 numpy 数组作为博弈矩阵。

  • 矩阵的第一行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值