AutoGTPQ简介
AutoGPTQ是一个开源工具包,专注于简化大规模语言模型(LLMs)的量化过程。它基于高效的GPTQ算法开发,主要使用Python编程语言,并依托PyTorch框架来实现量化功能。AutoGPTQ的设计目标是为开发者和研究人员提供一个易于使用的API接口,即使对量化技术不太了解的用户也能轻松进行模型量化。通过采用仅量化权重的方式,该工具包在尽量减少性能损耗的情况下,缩减了模型体积,提升了部署的效率。
AutoGPTQ的主要功能包括:
- 模型量化:支持将大模型如BERT、OPT量化为4位版本,显著降低存储需求并加快推理速度。
- 简洁API:提供易用的API,简化量化操作。
- 性能优化:通过优化策略保持原模型的推理性能,适用于资源受限的场景。
- 跨平台支持:兼容Linux、Windows及NVIDIA、AMD和Intel Gaudi等硬件平台。
- Triton集成(可选):在Linux系统中,通过Triton进一步提升推理性能。
最近的更新加入了Marlin内核支持,并集成Transformer、Optimum和PeFT库,使量化模型的运行和训练更加高效便捷。
源2.0-M32大模型适配AutoGPTQ量化工具教程
- AutoGPTQ量化过程
以下是官方提供的量化案例,详细的量化过程如下:
- 首先,通过自定义的类AutoGPTQForCausalLM的from_pretrained方法来初始化模型。在这一过程中,需要传入两个核心参数:第一个参数是模型的存储路径,用于加载预训练模型;第二个参数是与量化相关的配置,该配置由 BaseQuantizeConfig 类来管理和维护。BaseQuantizeConfig 允许用户根据需求自定义量化的精度(例如4位或8位)以及其他关键的量化参数。这一步骤确保模型加载时为后续的量化步骤做好准备
- 接着,将预处理后的量化数据(例如量化样本 examples)传递给 AutoGPTQForCausalLM 的 quantize 方法,用于实际执行模型量化。quantize 方法会根据传入的示例数据和量化配置,对模型的权重进行调整,将模型的参数从高精度(例如32位浮点数)转换为低比特位表示(如4位或8位)。这一过程中的量化策略基于 GPTQ 算法,旨在尽可能减少模型性能的损失,同时显著降低模型的计算和存储成本。量化后的模型在推理时占用更少的资源,但仍能保持接近原模型的准确性。
- 完成量化后,量化模型将通过 AutoGPTQForCausalLM 提供的保存机制进行保存。量化后的模型通常会存储为较小的文件,便于后续的加载和部署。保存后的模型可以直接用于推理,且无需再次进行量化处理,大大提升了使用的便捷性。
注:AutoGPTQForCausalLM是工具提供的专用加载类,通过GPTQ_CAUSAL_LM_MODEL_MAP (在auto