这是牧心小辉的处女作。
这是牧心小辉第三次尝试 提高+/省选−题目,前段时间就偶尔刷刷水题,没有学习新的算法,希望大家不要学习俺。。。
这是一道主要考察状态压缩的题目,涉及到了许多技巧,题目比较难,但搞懂了也是蛮开心,有意义的一件事。
题目描述
在 N×N 的棋盘里面放 K 个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 8 个格子。
输入格式
只有一行,包含两个数 N,K。
在解这道题之前需要先了解位运算:
好了,通过上图相信你对位运算有了一定的了解。
接下来如何有效的表示状态(花费较少的空间来存储状态)是一个问题:
本题采用的是用二进制表示状态,用十进制数存储状态
譬如以N=3为例:(1表示国王,0表示空位)
行的合法状态:000->0 001->1 010->2 100->4 101->5
行内合法判断:如果!(i&i>>1)为真,则i合法
行间兼容判断:如果!(a&b)&&!(a&b>>1)&&!(a&b<<1)为真,则兼容。
后面就是正常的dp了,类似多维背包,具体细节解释如下。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,k; //棋盘行数,国王总数
int cnt; //一行的合法状态个数
int s[1<<12]; //一行的合法状态集
int num[1<<12]; //每个合法状态包含的国王数
long long f[12][144][1<<12];
//f[i,j,a]表示前i行已放了j个国王,第i行的第a个状态时的方案数
int main(){
cin>>n>>k;
for(int i=0; i<(1<<n); i++) //枚举一行的所有状态
if(!(i & i>>1)){ //如果不存在相邻的1
s[cnt++]=i; //一行的合法状态集,例101
for(int j=0; j<n; j++)
num[i]+=(i>>j & 1); //每个合法状态包含的国王数
}
f[0][0][0]=1; //边界
for(int i=1; i<=n+1; i++) //枚举行
for(int j=0; j<=k; j++) //枚举国王数
for(int a=0; a<cnt; a++) //枚举第i行的合法状态
for(int b=0; b<cnt; b++) //枚举第i-1行的合法状态
{
int c=num[s[a]]; //第i行第a个状态的国王数
if((j>=c) //可以继续放国王
&&!(s[b]&s[a]) //不存在同列的1
&&!(s[b]&(s[a]<<1)) //不存在斜对角的1
&&!(s[b]&(s[a]>>1)))
f[i][j][a]+=f[i-1][j-c][b]; //行间转移
}
cout<<f[n+1][k][0]<<endl; //第n+1行不放国王的方案数
return 0;
}