社交平台文本自杀风险识别

这是一个可能博主无法在本学期课程上实现的课题,在此把已有成果分享出来,希望助力后来者的研究。由于博主为完全无基础的大一学生,因此记录会从最基础开始

一.引入和步骤简介

近年来 ,自杀意念的表达不再局限于口头形式,通过电子手段(包括论坛、博客、轻博客、即时消息、电子邮件、私信等)表达痛苦和自杀意念的情况逐渐增多。青年人是网络平台的主要用户,也是自杀的高风险人群,网络平台的数据公开化为自杀预测的机器学习提供了数据来源。

——《机器学习在网络社交平台自杀预测领域的研究进展》

通过对文本数据进行分析,同时结合机器学习,我们可以构建识别自杀倾向的模型。更进一步,我们可以通过定时爬虫等方式实现实时监测(由于技术限制,这一步并未深入开展研究)。

那么,我们的主要步骤,就如下了。

开始
寻找数据集
文本数据预处理
文本特征选择,向量化表示
训练模型
结束

二.已有数据集

1.在csdn内找到了一个走饭评论区的留言,走饭的微博现在已经被隐藏,这些数据对我们有着重要意义,这里贴出原帖地址,感兴趣的朋友们可以自行下载
https://blog.csdn.net/u010751000/article/details/125326005?spm=1001.2014.3001.5506

2.在github中找到了一个比较初步的svm自杀文本分类模型,其中包含了数据集,在此感谢这位开源作者
https://oan40u20qxc.feishu.cn/record/YDpzrapx5ea7BpcVNfDcIMUbnQe

三.文本预处理

开始
人工标注数据
重复值剔除
分词
去除停用词
进行特征选择
实现文本向量化表示
结束

人工标注数据
常用的是存储于不同的txt文件中,或者存储于csv文件中,并且用1和0标注

jieba分词器
jieba分词器是一种非常便利的分词工具,同时可以基于TF-IDF或者TextTRank算法的关键词提取,此外,jieba分词还可以导入自定义词典
特征选择
TF-IDF文本表示法、n-gram算法可以参考。

四.简单机器学习模型的选择

由于博主只是具有初步python基础的新人,在此,通过阅读论文,我们选择了随机森林作为分类模型。
在初步的机器学习中,有几个文本分类模型,它们分别是随机森林、支持向量机、朴素贝叶斯、逻辑回归。在博主阅读的论文中,svm和随即森林使用的比较多,并且总体而言随机森林算力消耗小,准确率高。以下为其中两篇论文的结果,研究时也可以重点参考。基于文本信息的自杀倾向检测《基于文本信息的自杀倾向检测》

基于中文微博语言特征的自杀意念检测
《基于中文微博语言特征的自杀意念检测》

五.这个研究方向的特殊性

1.在论文《基于中文微博语言特征的自杀意念检测》中,研究团队构建了自杀词典,并且对词性特征进行了研究,以提高模型的准确性。
在这里插入图片描述

之前有研究指出,有自杀行为的用户高频率地使用人称代词、表达计划的词以及多功 能词,但是却很少使用动词,研究还发现严重抑郁症患者和有较大压力的人在产生自 杀行为时较多地使用第二人称代词。——来源论文

2.在论文《基于文本信息的自杀倾向检测》中,团队加入了人工指标,例如敏感发言时间,因为在不同时间段自杀倾向文本的可能性也有所变化。

希望你能够成功!也欢迎与我交流

### 机器学习在风险预测中的应用 #### 风险预测概述 风险预测涉及识别潜在的风险事件并评估这些事件发生的可能性及其影响。随着数据量的增长和技术的进步,机器学习成为处理复杂风险预测问题的有效工具之一。 #### 数据驱动的方法 机器学习算法可以从大量历史数据中自动提取特征,并建立用于预测未来趋势的模型。这种方法特别适用于金融、医疗保健等领域,在这些领域内存在大量的结构化和非结构化数据可供分析[^1]。 #### 特征工程的重要性 为了提高预测准确性,特征工程技术被广泛应用于准备输入给机器学习模型的数据集。对于基于文本的风险预测场景,如社交媒体上的自杀倾向监测,自然语言处理技术可以用来解析用户的表达方式,从而发现可能表明心理危机的语言模式[^3]。 #### 支持向量机的应用实例 支持向量机(SVM),尤其是采用sigmoid核函数的支持向量机,因其与两层感知器神经网络之间的联系而受到关注。尽管该核不是绝对正定的,但在实际应用中表现出良好的性能特性。这种类型的SVM可以在某些特定情况下作为有效的二分类器来区分高危个体与其他人群[^2]。 #### 平衡公平性和表现力 当涉及到敏感决策时,比如信贷审批或保险定价,除了追求最高的预测精度外,还需要考虑到如何平衡不同群体间的待遇差异。这是一个重要的伦理考量点,也是当前研究的一个热点话题[^4]。 ```python from sklearn import svm import numpy as np # 假设X_train, y_train已经定义好 clf = svm.SVC(kernel='sigmoid') clf.fit(X_train, y_train) def predict_risk(new_data): predictions = clf.predict([new_data]) return "High Risk" if predictions[0]==1 else "Low Risk" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值