【算法中的数学】裴蜀定理(Bézout’s Identity)总结

裴蜀定理(Bézout’s Identity)总结

裴蜀定理是数论中的一个重要定理,描述了整数线性组合与最大公约数(GCD)之间的关系。


1. 裴蜀定理的内容

对于任意两个整数 aaabbb,设它们的最大公约数为 d=gcd⁡(a,b)d = \gcd(a, b)d=gcd(a,b),那么:

  • 存在整数 xxxyyy,使得:

ax+by=d a x + b y = d ax+by=d

  • 推论
    • 方程 ax+by=ma x + b y = max+by=m 有整数解 当且仅当 d∣md \mid mdm(即 mmm 能被 ddd 整除)。
    • 特别地,如果 gcd⁡(a,b)=1\gcd(a, b) = 1gcd(a,b)=1,则存在 x,yx, yx,y 使得 ax+by=1a x + b y = 1ax+by=1

推广到多个数
对于 nnn 个数 a1,a2,…,ana_1, a_2, \dots, a_na1,a2,,an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HojanMa

感恩社区,回馈社区

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值