裴蜀定理(Bézout’s Identity)总结
裴蜀定理是数论中的一个重要定理,描述了整数线性组合与最大公约数(GCD)之间的关系。
1. 裴蜀定理的内容
对于任意两个整数 aaa 和 bbb,设它们的最大公约数为 d=gcd(a,b)d = \gcd(a, b)d=gcd(a,b),那么:
- 存在整数 xxx 和 yyy,使得:
ax+by=d a x + b y = d ax+by=d
- 推论:
- 方程 ax+by=ma x + b y = max+by=m 有整数解 当且仅当 d∣md \mid md∣m(即 mmm 能被 ddd 整除)。
- 特别地,如果 gcd(a,b)=1\gcd(a, b) = 1gcd(a,b)=1,则存在 x,yx, yx,y 使得 ax+by=1a x + b y = 1ax+by=1。
推广到多个数:
对于 nnn 个数 a1,a2,…,ana_1, a_2, \dots, a_na1,a2,…,an

最低0.47元/天 解锁文章
7063

被折叠的 条评论
为什么被折叠?



