题目传送门:AcWing 1014. 登山
一、题目重述
- N 个景点,按顺序浏览(编号递增)。
- 不能连续浏览海拔相同的两个景点。
- 一旦开始下山(海拔递减),就不能再上升。
- 求最多能浏览的景点数。
输入格式:
- 第一行:N(景点数量,2 ≤ N ≤ 1000)。
- 第二行:N 个整数,表示每个景点的海拔。
输出格式:
- 一个整数,表示最多能浏览的景点数。
示例:
输入:
8
186 186 150 200 160 130 197 220
输出:
4
二、题目分析
问题转化为:求一个 先严格上升、后严格下降 的子序列(不能有相邻相同海拔),且长度最长。
三、算法分析
- 关键点:
- 类似于“最长上升子序列”的变种。
- 需要分别计算以每个点为峰值的 上升序列 和 下降序列 的长度之和。
- 步骤:
- 从左到右求每个点的最长上升子序列长度(
f[i]
)。 - 从右到左求每个点的最长下降子序列长度(
g[i]
)。 - 结果为
max(f[i] + g[i] - 1)
(减去重复计算的峰值点)。
- 从左到右求每个点的最长上升子序列长度(
四、动态规划思路
a. 状态表示
f[i]
:以a[i]
结尾的最长上升子序列长度。g[i]
:以a[i]
开头的最长下降子序列长度。
b. 初始化
f[i] = 1
(至少包含自己)。g[i] = 1
。
c. 状态转移
- 上升部分:
for (int i = 1; i <= n; i++) { f[i] = 1; for (int j = 1; j < i; j++) { if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1); } }
- 下降部分:
for (int i = n; i >= 1; i--) { g[i] = 1; for (int j = n; j > i; j--) { if (a[j] < a[i]) g[i] = max(g[i], g[j] + 1); } }
d. 最终结果
res = max(f[i] + g[i] - 1)
。
五、代码实现
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, a[N], f[N], g[N];
int main() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
// 正向求最长上升子序列
for (int i = 1; i <= n; i++) {
f[i] = 1;
for (int j = 1; j < i; j++) {
if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
}
}
// 反向求最长下降子序列
for (int i = n; i >= 1; i--) {
g[i] = 1;
for (int j = n; j > i; j--) {
if (a[j] < a[i]) g[i] = max(g[i], g[j] + 1);
}
}
// 合并结果
int res = 0;
for (int i = 1; i <= n; i++) res = max(res, f[i] + g[i] - 1);
cout << res << endl;
return 0;
}
六、重点细节
- 海拔相同:题目要求不能连续相同,但代码中
a[j] < a[i]
已经隐含处理(严格递增/递减)。 - 反向遍历:计算
g[i]
时需从右向左,表示“从i
开始下降”。 - 峰值重复:
f[i] + g[i] - 1
是因为峰值点被计算了两次。
七、复杂度分析
- 时间复杂度:O(N²),两重循环。
- 空间复杂度:O(N),存储
f
和g
数组。
八、总结
- 本题是 最长上升子序列 的变形,通过正反两次动态规划求解。
- 关键点在于理解“先上升后下降”的模型,并合并两部分结果。
- 类似题目:AcWing 482. 合唱队形(几乎相同)。