上一篇:朴素版Dijkstra
朴素版Dijkstra的实现步骤:
注:S[ ]:当前已确定最短距离的点。
1.初始化距离,使源点到自身点的距离为0,到其他点的距离为无穷大,dis[ 1 ]=0,dis[ i ]=+∞。
2.用for循环循环n次,找到不在S中的距离最短的点t,然后加入S,用t更新其他点的距离。距离更新:对于与顶点u相邻的所有顶点v,如果通过顶点u到达顶点v的距离更短,即d[u]+w(u,v)<d(v),其中w(u,v)是边的权重,则更新顶点的距离d[v]=d[u]+w(u,v)。
堆优化版的Dijkstra:
与朴素版Dijkstra大致相同,只是在寻找距离最短的点时采用堆的方式寻找,使得每次寻找距离最短的点的时间复杂度变为O(1),循环n 次,总共进行n 次查找,所以总的寻找距离最短的点的时间复杂度为O(n),降低了时间复杂度。(朴素版Dijkstra寻找距离最短的点采用了两个循环其时间复杂度为O(n^2)),此外在实现距离更新时的时间复杂度是m(m是边的数量),所以整个堆优化版的Dijkstra的时间复杂度是mlogn.
堆的实现:
1.采用手写堆:可以保证堆中的元素一直为n
2.c++中可以采用优先队列
例题:
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n,m≤1.5×105
图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 109。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef pair<int,int >PII;//pair类型存储点的编号和距离
const int N = 1e6+10;
int h[N],w[N],ne[N],e[N],idx;//稀疏图采用邻接矩阵存储
bool st[N];
int dist[N];
int n,m;
void add(int x,int y,int z){
e[idx]=y;
w[idx]=z;
ne[idx]=h[x];
h[x]=idx++;
}
int dijkstra(){
memset(dist,0x3f,sizeof dist);
dist[1]=0;
priority_queue<PII,vector<PII>,greater<PII>>heap;
heap.push({0,1});//
while(heap.size()){
auto t=heap.top();//找到距离最小的点
heap.pop();
int ver=t.second,distance=t.first;
if(st[ver])continue;
st[ver]=true;
for(int i=h[ver];i!=-1;i=ne[i]){
int j=e[i];
if(dist[j]>dist[ver]+w[i]){
dist[j]=dist[ver]+w[i];
heap.push({dist[j],j});
}
}
}
if(dist[n]==0x3f3f3f3f)return -1;
return dist[n];
}
int main(){
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
while(m--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
printf("%d",dijkstra());
return 0;
}