感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。当前全球光伏大规模装机发电有效推动了光伏电场智慧运维巡检需求,原本高度依赖人力的光伏板运维巡检工作正因智能化、数字化、无人化技术的应用出现变革。
新能源光伏板视觉数据可以促进光伏板领域运维巡检新技术产、学、研、用协作,引领行业技术创新,助力光伏板智慧巡检高质量发展,进一步推广光伏智能巡检、资产目标检测、缺陷检测、异常识别等方向的创新应用。因此小编在这里整理了一份AI+新能源光伏板视觉数据集,共包含8+细分场景数据集,助力AI+新能源光伏板智慧巡检的研究与创新。
01
—
光伏板表面故障检测数据集
【数据背景】太阳能发电场监测包括对光伏板的持续评估和监测,以确保其效率、安全性和寿命,计算机视觉技术引入了一种改变游戏规则的方法。太阳能电池板表面积聚的灰尘、雪、鸟粪等会降低太阳能模块的效率,从而降低产生的能量。监测和清洁光伏板是一项至关重要的任务,因此制定监测和清洁这些电池板的最佳程序对于提高模块效率、降低维护成本和减少资源使用非常重要。该数据集的目的是研究不同计算机视觉算法以尽可能高的精度检测光伏板表面的灰尘、雪、鸟粪、物理和电气等故障的能力。
【应用领域】AI+光伏板表面故障检测
【文件目录】包含以下数据文件:
Dataset Files:
- Bird-drop
- Clean
- Dusty
- Electrical-damage
- Physical-Damage
- Snow-Covered
Code Files
- cnn-vgg16.ipynb
- mobilenetv3-efficient.ipynb
【数据说明】光伏板故障标签以6个不同的类文件夹进行标记,可以进行分类,收集的图像数量略有不平衡,图像未进行统一尺寸调整。数据集共包含891+光伏板表面图像样张,所有图像样张均包含标签,数据集未采用数据增广,可以自行划分训练集、验证集和测试集。光伏板表面故障标签包含6大类:Bird-drop、Clean、Dusty、Electrical-damage、Physical-Damage和Snow-Covered,其中Bird-drop包含208+图像样张;Clean包含194+图像样张;Dusty包含191+图像样张;Electrical-damage包含104+图像样张;Physical-Damage包含70+图像样张;Snow-Covered包含124+图像样张。
02
—
多分辨率光伏板分割数据集
【数据背景】这是来自卫星和航空图像的光伏板资产图像数据集。该数据集包括0.8m、0.3m和0.1m三种不同空间分辨率采集的三组遥感图像样本,即高分二号和北京二号图像的PV08、航空摄影的PV03和无人机正射照片的PV01。PV08包含屋顶和地面图像样本,PV03中的地面样本根据其背景土地利用类型分为五类:灌木地、草地、农田、盐碱地和水面,PV01中的屋顶样本根据其背景屋顶类型分为三类:平板混凝土、钢瓦和砖。
【应用领域】AI+光伏板资产遥感分割
【文件目录】包含以下数据文件:
Dataset Files:
- PV01
- PV03
- PV08
Code Files:
- Solar-Panel-Recognition
-- app
-- data
-- docs
-- models
-- notebooks
--- binary_segmentation.ipynb
--- segmentation_pytorch.ipynb
--- segmentation_pytorch_lightning.ipynb
-- references
-- reports
-- src
--- __init__.py
--- data
--- features
--- models
--- visualization
-- READEME.md
--requirements.txt
-- setup.py
-- tox.ini
essd-13-5389.pdf:数据集参考论文
【数据说明】所有光伏图像样张采集于中国江苏省,涉及总面积107,200平方公里。陆地地形主要由低地和平坦的平原组成,西南和北部有丘陵和山脉。随着经济的不断发展和人口的不断增长,江苏省的能源需求也在快速增长。政府致力于通过提高能源效率和促进绿色能源的使用来实现能源转型,并出台了一系列推广太阳能光伏的政策。由于土地资源短缺,江苏省安装的光伏板大多分布在土地竞争不激烈的地区(如稀疏灌木、低密度草地、水库、池塘、盐碱地、屋顶等),这使得采集不同背景的各种光伏板图像变得方便。
下表为不同空间分辨率数据集的图像尺寸和数量情况,数据集共包含3716+光伏板高空遥感图像样张,所有图像样张均包含标签,数据集未采用数据增广,可以自行划分训练集、验证集和测试集。其中PV08的图像尺寸为1024×1024,包含763+图像样张;PV03的图像尺寸为1024×1024,包含2308+图像样张;PV01的图像尺寸为256×256,包含645+图像样张。
该数据集既可以用于目标检测算法研究,也可以用于图像分割算法研究。下面给出了Code Files用于高空遥感图像光伏板识别的各算法指标表现,分别使用不同版本YOLOv5模型进行目标检测,以及使用Unet++、FPN、DLV3+和PSPNet进行图像分割。
03
—
光伏板红外热斑检测数据集
【数据背景】近年来,太阳能作为新能源因其安全、绿色、可持续的特点被越来越多地利用,在发电工作中更是被普遍运用,全球各国都开始大力建设光伏电站。然而太阳能光伏发电站在运作的过程中,会因为各种原因电池板上出现遮挡,从而导致照射在发电组件上的阳光强度不一致,出现温度过高的情况,从而出现热斑故障,严重影响到光伏系统正常发电工作。基于红外成像技术用于光伏发电中的热斑检测的思路,对光伏板进行有效的热斑检测与维护,同时避免由于热斑可能给光伏组件或系统的寿命带来的威胁。
【应用领域】AI+光伏板红外热斑检测
【文件目录】包含以下数据文件:
Data Files:
- train:训练集
- valid:验证集
- test:测试集
README.txt:数据集说明
【数据说明】检测目标以Pascal VOC格式进行标注,对每个图像进行以下预处理,统一调整大小为640x640,数据集未采用数据增广。数据集共包含2113+光伏板红外图像样张,所有图像样张均包含xml标注,其中train包含1906+图像样张及其对应的xml标注,valid包含158+图像样张及其对应的xml标注,test包含49+图像样张及其对应的xml标注,使用时也可以自行划分训练集、验证集和测试集。最后需要注意的是,该数据集涉及细粒度目标识别,一张图像样张中可能没有热斑、1个热斑或者多个热斑,热斑目标标签均标记为PV Hotspot。
04
—
光伏板红外异常识别数据集
【数据背景】基于红外成像技术的光伏电站无人机智能巡检,可以使用行业级无人机自动仿地飞行采集可见光和红外线温度图像,准确、高效地检测太阳能光伏面板的故障异常,通过适时适当的消缺处置,从而减少发电量损失,延长光伏面板的整体使用寿命,减少光伏电站整体养护成本,为光伏电站运营维护由人力模式进化到智能化模式奠定了坚实的基础,促进光伏电站养护管理企业的降本增效,具有长远的经济价值和社会意义。
【应用领域】AI+光伏板红外异常识别
【文件目录】包含以下数据文件:
Data Files:
- train:训练集
- valid:验证集
- test:测试集
README.txt:数据集说明
【数据说明】检测目标以Pascal VOC格式进行标注,对每个图像进行以下预处理,统一调整大小为640x640,数据集未采用数据增广。数据集共包含5352+光伏板红外图像样张,所有图像样张均包含xml标注,其中train包含3748+图像样张及其对应的xml标注,valid包含1071+图像样张及其对应的xml标注,test包含533+图像样张及其对应的xml标注,使用时也可以自行划分训练集、验证集和测试集。需要注意的是,该数据集涉及细粒度目标识别,一张图像样张中可能没有异常、1个异常标记或者多个异常标记,红外异常标签并未区分温度异常、电气异常、划痕、破损等,均统一标记为Thermal Defects。
05
—
光伏板阵列资产检测数据集
【数据背景】随着可再生能源的迅速发展,光伏板的安装数量不断增加,导致光伏资产管理面临巨大挑战。传统的人工巡检耗时耗力,效率低下,而光伏板资产遥感目标检测可以通过遥感数据和智能算法,实现对光伏板的快速、准确、大规模的监测与管理,减少人力资源的投入,提高监测效率和覆盖范围。通过开发高效的目标检测算法,可以实现对光伏板的统计、分析和管理,帮助优化光伏发电系统的布局和运营策略,提高能源利用效率和经济效益。进一步地,可以及时发现光伏板的故障、破损或污染等问题,并及时采取维修措施,提高光伏发电系统的可靠性和维护效率。
【应用领域】AI+光伏板阵列资产检测
【文件目录】包含以下数据文件:
Data Files:
- train:训练集
- valid:验证集
- test:测试集
README.txt:数据说明
【数据说明】检测目标以COCO JSON格式进行标注,对每个图像进行以下预处理,统一调整大小为640x640,数据集未采用数据增广。数据集共包含2120+光伏板阵列遥感可见光图像样张,所有图像样张均包含json标注,其中train包含1493+图像样张及其对应标注,valid包含424+图像样张及其对应标注,test包含203+图像样张及其对应标注,使用时也可以自行划分训练集、验证集和测试集。需要注意的是,该场景涉及细粒度多目标检测,一张图像样张中可能包含1个光伏板阵列,或者很多个光伏板阵列,光伏板阵列目标标签均标记为solar-panels。
06
—
光伏电池板覆雪识别数据集
【数据背景】在寒冷地区或冬季,光伏电池板表面常常会被积雪覆盖,导致光伏系统的发电效率下降甚至完全停止发电。传统的人工巡检不仅耗时费力,而且无法及时发现和处理覆雪问题。光伏电池板覆雪识别可以及时发现光伏电池板表面的积雪情况,及时采取清雪措施,以最大程度地提高光伏系统的发电效率。进一步地,通过准确判断光伏电池板是否覆雪,可以对光伏板资产进行全自动化监测,减少人力资源的投入和运维成本,提高运维效率。
【应用领域】AI+光伏电池板覆雪识别
【文件目录】包含以下数据文件:
Images
- all_snow
- no_snow
- partial
Power_Measurements
- Data.20190521.txt
- Data.20190522.txt
......
- ERC_data_05_20_2019.txt
Data Description.pdf:数据集说明
【数据说明】该数据集包含滑铁卢大学ERC大楼顶部太阳能装置的一组测量值,以及该系统的一些采样图像,这些图像可以通过图像识别来识别太阳能光伏板上的雪。在Images文件夹中,有三个文件夹:no_snow、partial和all_snow,分别包含光伏板上没有雪、部分被雪覆盖和完全被雪覆盖的图像样张。每个jpg文件都以拍摄图像的时间戳命名,图片拍摄于2019年1月26日、27日、28日、2月2日、3日、28和3月1日、2日、21日、22日、23日、24日和25日。在Power_Measurements文件夹中,每个文件都以进行测量的日期命名,每个条目都包含时间戳、电池电压和电池电流,测量值收集于2019年2月27日至2019年7月22日。
数据集共包含395+光伏板覆雪图像样张,所有图像样张均包含标签,数据集未采用数据增广,可以自行划分训练集、验证集和测试集。光伏板覆雪标签包含3大类:no_snow、partial和all_snow,其中no_snow包含270+图像样张;partial包含27+图像样张;all_snow包含98+图像样张。