太阳能 光伏电池缺陷异常检测数据集PVELAD

河北工业大学与北京航空航天大学合作发布的PVEL-AD(EL2021)数据集,包含36,543张近红外图像,用于光伏电池异常缺陷检测,涵盖1类正常和12类异常,如裂纹、断栅等,并提供40000+个真实标注框。" 116992290,7447784,理解Linux的硬链接与软链接,"['Linux', '文件系统', '链接']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

太阳能 光伏电池缺陷异常检测数据集PVELAD
河北工业大学、北京航空航天大学联合发布的——PVEL-AD 数据集又叫做EL2021数据集是用于对光伏电池异常缺陷检测方法进行基准测试的数据集。

PVEL-AD包含 36,543 张具有各种内部缺陷和异构背景的近红外图像,其中包含1类无异常图像和具有 12 个不同类别的异常缺陷图像,例如裂纹(线状和星状)、断栅、黑芯、未对准、粗线、划痕、碎片、断角和材料缺陷。 此外,我们为 12 种类型的缺陷提供了 40000+ 个真实标注框用于缺陷检测。

### 下载太阳能光伏电池缺陷检测数据集 对于太阳能光伏电池缺陷检测的数据集获取,通常可以从公开的研究项目或专门的数据库网站下载。一个常用的选择是从学术研究机构发布的资源中寻找。 例如,IEEE DataPort 提供了一个名为“Solar Panel Fault Detection and Classification”的数据集[^1]。该数据集包含了不同类型的故障图像以及正常工作的面板图片,适用于训练机器学习模型来识别各种可能影响光伏发电效率的问题。 另一个可选平台是 Kaggle,在这里可以找到由社区成员上传的各种工业级应用相关的数据集合。通过搜索引擎查找关键词"solar photovoltaic panel defect detection dataset"也可以帮助定位更多潜在资源。 为了方便访问这些资源,下面提供一段 Python 代码示例,展示如何利用 `kaggle` API 来下载来自Kaggle的比赛或者公共数据集: ```python import os from kaggle.api.kaggle_api_extended import KaggleApi def download_kaggle_dataset(dataset_slug, path='.'): api = KaggleApi() api.authenticate() # 需要提前配置好API密钥 full_path = os.path.join(path, dataset_slug.split('/')[1]) if not os.path.exists(full_path): os.makedirs(full_path) api.dataset_download_files(dataset_slug, path=full_path, unzip=True) ``` 调用此函数并传入目标数据集名称即可完成下载操作。需要注意的是,使用前需确保已安装必要的库 (`pip install kaggle`) 并按照官方文档说明设置好了个人认证信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值