4.2.1 讨论曲线曲线的凹凸性与拐点
一.大凹小凸
二.2个解法求拐点:
(1)求出f(x)二阶导,
令f(x)二阶导=0,
求出x0
(2)证明f(x)二阶导在x0附近异号
注意:如果f(x0)二阶导不存在,且f(x)二阶导在x0两侧异号,则拐点是(x0,f(x0))是拐点
说点干货:
1 .求凹凸区间的时候,求导要三万分细心
2.证明f(x)二阶导在x0异号,就要证明f(x)三阶导存在,且f(x0)此时大概率是在0处。
——————
4.2.2 图形题
图形题掌握的是对概念的熟练程度。
说几个突破点:
1.如果原题有方程,则通过方程变换得到函数的切线方程,然后就是利用“大凹小凸”原理。(大凹小凸是核心)
2.找到零点作为突破点,这时候可能用到“假设法”。
——————
4.2.3 曲率与曲率圆
(1)两个公式:
R=1/k和k的公式
(2)注意曲线和曲率圆的关系:
在切点处: ①同切线(同斜率)②同曲率
解法:带入函数值+用斜率作为等式+用曲率作为等式,最后联立
——————
4.2.4 讨论含参方程的根
突破点:极值点+极值+画图分类讨论零点(画图是为了更好判断函数增减趋势)
4.2.5 求渐近线方程
水平渐近线:x→∞ y=c
铅直渐近线:x→x0 y=∞
斜渐近线:x→∞ ①y/x=k ②y-kx=b
主要间接考察的是等价无穷小,如果出现等价无穷大,就要用t=1/x替换。