共振频率介绍

前言

提醒:
文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。
其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。


共振频率

共振频率是物理系统在特定频率下振幅显著增大的现象,其数学描述因系统类型(机械、电路、声学等)而异。以下从经典力学和电路系统两个角度展开,结合微分方程与频响特性进行解析。


一、机械振动系统的共振频率

1. 无阻尼单自由度系统

模型方程:
m x ¨ + k x = F 0 cos ⁡ ( ω t ) m\ddot{x} + kx = F_0\cos(\omega t) mx¨+kx=F0cos(ωt)

  • m m m:质量;
  • k k k:弹簧刚度;
  • F 0 F_0 F0:激励幅值; ω \omega ω:激励频率。

固有频率公式:
f 0 = 1 2 π k m f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m}} f0=2π1mk
当激励频率 ω = ω 0 = k m \omega = \omega_0 = \sqrt{\frac{k}{m}} ω=ω0=mk 时,系统发生共振,振幅趋于无穷大(理想无阻尼情况)。

2. 有阻尼单自由度系统

模型方程:
m x ¨ + c x ˙ + k x = F 0 cos ⁡ ( ω t ) m\ddot{x} + c\dot{x} + kx = F_0\cos(\omega t) mx¨+cx˙+kx=F0cos(ωt)

  • c c c:阻尼系数;
  • 阻尼比: ζ = c 2 m k \zeta = \frac{c}{2\sqrt{mk}} ζ=2mk c

位移响应幅值:
X ( ω ) = F 0 ( k − m ω 2 ) 2 + ( c ω ) 2 X(\omega) = \frac{F_0}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}} X(ω)=(kmω2)2+(cω)2 F0
共振频率:
实际共振频率因阻尼存在而略低于固有频率:
ω r = ω 0 1 − 2 ζ 2 \omega_r = \omega_0\sqrt{1 - 2\zeta^2} ωr=ω012ζ2
ζ ≪ 1 \zeta \ll 1 ζ1时, ω r ≈ ω 0 \omega_r \approx \omega_0 ωrω0;当 ζ ≥ 1 2 \zeta \geq \frac{1}{\sqrt{2}} ζ2 1时,系统无共振峰。


二、电路系统的共振频率

1. RLC串联电路

模型方程:
L d 2 q d t 2 + R d q d t + 1 C q = V 0 cos ⁡ ( ω t ) L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = V_0\cos(\omega t) Ldt2d2q+Rdtdq+C1q=V0cos(ωt)

  • L L L:电感; R R R:电阻; C C C:电容;
  • q q q:电荷; V 0 V_0 V0:电源电压幅值。

共振频率公式:
f 0 = 1 2 π L C f_0 = \frac{1}{2\pi\sqrt{LC}} f0=2πLC 1
在共振时,电路阻抗最小( Z = R Z = R Z=R),电流幅值最大。

2. 频域特性

电流幅值响应:
I ( ω ) = V 0 R 2 + ( ω L − 1 ω C ) 2 I(\omega) = \frac{V_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} I(ω)=R2+(ωLωC1)2 V0
半功率带宽:
Δ ω = R L 或 Δ f = R 2 π L \Delta \omega = \frac{R}{L} \quad \text{或} \quad \Delta f = \frac{R}{2\pi L} Δω=LRΔf=2πLR


三、多自由度系统的共振频率

对于 N N N自由度系统,运动方程可写为矩阵形式:
M x ¨ + C x ˙ + K x = F ( t ) \mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{F}(t) Mx¨+Cx˙+Kx=F(t)

  • M \mathbf{M} M:质量矩阵; K \mathbf{K} K:刚度矩阵; C \mathbf{C} C:阻尼矩阵。

特征频率求解:
通过求解无阻尼自由振动方程的特征值问题:
det ⁡ ( K − ω 2 M ) = 0 \det(\mathbf{K} - \omega^2\mathbf{M}) = 0 det(Kω2M)=0
得到的特征值 ω i 2 \omega_i^2 ωi2对应系统的固有频率,每个频率对应一个共振峰。


四、共振条件的数学本质

共振发生的核心条件是激励频率与系统固有频率匹配,导致能量持续输入与系统储能相位同步。数学表现为:

  1. 振幅最大化:响应函数分母最小化(见机械与电路幅值公式)。
  2. 相位跃迁:位移响应相位滞后从 0 ∘ 0^\circ 0(低频)过渡到 18 0 ∘ 180^\circ 180(高频),共振时相位差为 9 0 ∘ 90^\circ 90

五、工程应用与注意事项

  1. 应用场景:

    • 机械:减震器设计需避开共振频率;涡轮叶片需调整固有频率。
    • 电路:无线电调谐(选频)、滤波器设计
    • 声学:乐器共鸣腔设计、噪声控制。
  2. 避免共振破坏:

    • 通过修改质量、刚度或增加阻尼( ζ > 0.3 \zeta > 0.3 ζ>0.3)抑制共振幅值
    • 动态扫频测试识别系统共振点。
  3. 利用共振:

    • MRI成像:利用原子核在特定射频下的共振吸收。
    • 能量收集:振动能量采集器工作在共振频率附近。

六、数学推导示例(机械系统共振频率)

步骤1:无阻尼系统求解
假设解 x ( t ) = X cos ⁡ ( ω t ) x(t) = X\cos(\omega t) x(t)=Xcos(ωt),代入无阻尼方程:
− m ω 2 X cos ⁡ ( ω t ) + k X cos ⁡ ( ω t ) = F 0 cos ⁡ ( ω t ) -m\omega^2 X\cos(\omega t) + kX\cos(\omega t) = F_0\cos(\omega t) mω2Xcos(ωt)+kXcos(ωt)=F0cos(ωt)
整理得:
X = F 0 k − m ω 2 X = \frac{F_0}{k - m\omega^2} X=kmω2F0
当分母趋近于零时( ω → ω 0 \omega \to \omega_0 ωω0),振幅 X → ∞ X \to \infty X

步骤2:含阻尼系统的幅值最大化
对位移幅值公式求导并令 d X d ω = 0 \frac{dX}{d\omega} = 0 dωdX=0,解得:
ω r = ω 0 1 − 2 ζ 2 \omega_r = \omega_0\sqrt{1 - 2\zeta^2} ωr=ω012ζ2


七、总结公式对比表

系统类型共振频率公式关键参数
机械单自由度无阻尼 f 0 = 1 2 π k m f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m}} f0=2π1mk k , m k, m k,m
机械单自由度有阻尼 f r = f 0 1 − 2 ζ 2 f_r = f_0\sqrt{1 - 2\zeta^2} fr=f012ζ2 ζ = c 2 m k \zeta = \frac{c}{2\sqrt{mk}} ζ=2mk c
RLC串联电路 f 0 = 1 2 π L C f_0 = \frac{1}{2\pi\sqrt{LC}} f0=2πLC 1 L , C L, C L,C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值