前言
提醒:
文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。
其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。
文章目录
共振频率
共振频率是物理系统在特定频率下振幅显著增大的现象,其数学描述因系统类型(机械、电路、声学等)而异。以下从经典力学和电路系统两个角度展开,结合微分方程与频响特性进行解析。
一、机械振动系统的共振频率
1. 无阻尼单自由度系统
模型方程:
m
x
¨
+
k
x
=
F
0
cos
(
ω
t
)
m\ddot{x} + kx = F_0\cos(\omega t)
mx¨+kx=F0cos(ωt)
- m m m:质量;
- k k k:弹簧刚度;
- F 0 F_0 F0:激励幅值; ω \omega ω:激励频率。
固有频率公式:
f
0
=
1
2
π
k
m
f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m}}
f0=2π1mk
当激励频率
ω
=
ω
0
=
k
m
\omega = \omega_0 = \sqrt{\frac{k}{m}}
ω=ω0=mk时,系统发生共振,振幅趋于无穷大(理想无阻尼情况)。
2. 有阻尼单自由度系统
模型方程:
m
x
¨
+
c
x
˙
+
k
x
=
F
0
cos
(
ω
t
)
m\ddot{x} + c\dot{x} + kx = F_0\cos(\omega t)
mx¨+cx˙+kx=F0cos(ωt)
- c c c:阻尼系数;
- 阻尼比: ζ = c 2 m k \zeta = \frac{c}{2\sqrt{mk}} ζ=2mkc。
位移响应幅值:
X
(
ω
)
=
F
0
(
k
−
m
ω
2
)
2
+
(
c
ω
)
2
X(\omega) = \frac{F_0}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}
X(ω)=(k−mω2)2+(cω)2F0
共振频率:
实际共振频率因阻尼存在而略低于固有频率:
ω
r
=
ω
0
1
−
2
ζ
2
\omega_r = \omega_0\sqrt{1 - 2\zeta^2}
ωr=ω01−2ζ2
当
ζ
≪
1
\zeta \ll 1
ζ≪1时,
ω
r
≈
ω
0
\omega_r \approx \omega_0
ωr≈ω0;当
ζ
≥
1
2
\zeta \geq \frac{1}{\sqrt{2}}
ζ≥21时,系统无共振峰。
二、电路系统的共振频率
1. RLC串联电路
模型方程:
L
d
2
q
d
t
2
+
R
d
q
d
t
+
1
C
q
=
V
0
cos
(
ω
t
)
L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = V_0\cos(\omega t)
Ldt2d2q+Rdtdq+C1q=V0cos(ωt)
- L L L:电感; R R R:电阻; C C C:电容;
- q q q:电荷; V 0 V_0 V0:电源电压幅值。
共振频率公式:
f
0
=
1
2
π
L
C
f_0 = \frac{1}{2\pi\sqrt{LC}}
f0=2πLC1
在共振时,电路阻抗最小(
Z
=
R
Z = R
Z=R),电流幅值最大。
2. 频域特性
电流幅值响应:
I
(
ω
)
=
V
0
R
2
+
(
ω
L
−
1
ω
C
)
2
I(\omega) = \frac{V_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}
I(ω)=R2+(ωL−ωC1)2V0
半功率带宽:
Δ
ω
=
R
L
或
Δ
f
=
R
2
π
L
\Delta \omega = \frac{R}{L} \quad \text{或} \quad \Delta f = \frac{R}{2\pi L}
Δω=LR或Δf=2πLR
三、多自由度系统的共振频率
对于
N
N
N自由度系统,运动方程可写为矩阵形式:
M
x
¨
+
C
x
˙
+
K
x
=
F
(
t
)
\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{F}(t)
Mx¨+Cx˙+Kx=F(t)
- M \mathbf{M} M:质量矩阵; K \mathbf{K} K:刚度矩阵; C \mathbf{C} C:阻尼矩阵。
特征频率求解:
通过求解无阻尼自由振动方程的特征值问题:
det
(
K
−
ω
2
M
)
=
0
\det(\mathbf{K} - \omega^2\mathbf{M}) = 0
det(K−ω2M)=0
得到的特征值
ω
i
2
\omega_i^2
ωi2对应系统的固有频率,每个频率对应一个共振峰。
四、共振条件的数学本质
共振发生的核心条件是激励频率与系统固有频率匹配,导致能量持续输入与系统储能相位同步。数学表现为:
- 振幅最大化:响应函数分母最小化(见机械与电路幅值公式)。
- 相位跃迁:位移响应相位滞后从 0 ∘ 0^\circ 0∘(低频)过渡到 18 0 ∘ 180^\circ 180∘(高频),共振时相位差为 9 0 ∘ 90^\circ 90∘。
五、工程应用与注意事项
-
应用场景:
- 机械:减震器设计需避开共振频率;涡轮叶片需调整固有频率。
- 电路:无线电调谐(选频)、滤波器设计。
- 声学:乐器共鸣腔设计、噪声控制。
-
避免共振破坏:
- 通过修改质量、刚度或增加阻尼( ζ > 0.3 \zeta > 0.3 ζ>0.3)抑制共振幅值。
- 动态扫频测试识别系统共振点。
-
利用共振:
- MRI成像:利用原子核在特定射频下的共振吸收。
- 能量收集:振动能量采集器工作在共振频率附近。
六、数学推导示例(机械系统共振频率)
步骤1:无阻尼系统求解
假设解
x
(
t
)
=
X
cos
(
ω
t
)
x(t) = X\cos(\omega t)
x(t)=Xcos(ωt),代入无阻尼方程:
−
m
ω
2
X
cos
(
ω
t
)
+
k
X
cos
(
ω
t
)
=
F
0
cos
(
ω
t
)
-m\omega^2 X\cos(\omega t) + kX\cos(\omega t) = F_0\cos(\omega t)
−mω2Xcos(ωt)+kXcos(ωt)=F0cos(ωt)
整理得:
X
=
F
0
k
−
m
ω
2
X = \frac{F_0}{k - m\omega^2}
X=k−mω2F0
当分母趋近于零时(
ω
→
ω
0
\omega \to \omega_0
ω→ω0),振幅
X
→
∞
X \to \infty
X→∞。
步骤2:含阻尼系统的幅值最大化
对位移幅值公式求导并令
d
X
d
ω
=
0
\frac{dX}{d\omega} = 0
dωdX=0,解得:
ω
r
=
ω
0
1
−
2
ζ
2
\omega_r = \omega_0\sqrt{1 - 2\zeta^2}
ωr=ω01−2ζ2
七、总结公式对比表
系统类型 | 共振频率公式 | 关键参数 |
---|---|---|
机械单自由度无阻尼 | f 0 = 1 2 π k m f_0 = \frac{1}{2\pi}\sqrt{\frac{k}{m}} f0=2π1mk | k , m k, m k,m |
机械单自由度有阻尼 | f r = f 0 1 − 2 ζ 2 f_r = f_0\sqrt{1 - 2\zeta^2} fr=f01−2ζ2 | ζ = c 2 m k \zeta = \frac{c}{2\sqrt{mk}} ζ=2mkc |
RLC串联电路 | f 0 = 1 2 π L C f_0 = \frac{1}{2\pi\sqrt{LC}} f0=2πLC1 | L , C L, C L,C |