0、背景描述
过去一年,我基本都在考虑塔架(尤其是混塔)频率仿真/模态分析的问题。关于这个问题,不仅有地基刚度,还有塔筒本身以及其他影响频率的因素(比如阻尼)。考虑到仿真准确(先不说能不能非常准确)并不能彻底解决这个问题,我也慢慢在考虑如何从根本上解决风电机组频率偏差带来的问题。
基于上面的考虑,最近偶尔也会涉猎一些动力学的知识。本篇文章是从微信公众号模态空间拿来的,感觉非常不错,所以录入,以防丢失。想要看原文的点击这里。
原文参考的图书是
谭祥军. 从这里学NVH——噪声、振动、模态分析的入门与进阶(第二版),机械工业出版社,2021
来自这里,有兴趣的也可以看一看。
1、正文
很多时候,我们都认为共振频率与固有频率是一个东西,但实质上讲,二者有着本质的区别。第一,描述的角度不同,固有频率是结构的固有属性,跟外界激励没有关系,因此,固有频率是从结构固有特性角度来描述的。而共振频率是从结构受外界激励产生的响应来描述的,共振是一种现象。或者说,在“输入-振动系统-输出”模型中,固有频率是振动系统的固有属性,而共振是系统的输出。第二,二者的计算公式也有差异,但差异很细微。正是因为差异细微,才导致我们普遍都认为二者是同一个概念。
在这,以最简单的单自由度(SDOF)系统为例来说明共振频率和共振带的定义。SDOF系统的质量为 m m m ,刚度为 k k k,粘性阻尼为 c c c,其传递函数 H ( s ) H(s) H(s)定义为:
H ( s ) = 1 m s 2 + c s + k = 1 / m s 2 + c s / m + k / m H(s)=\frac{1}{ms^2+cs+k}=\frac{1/m}{s^2+cs/m+k/m} H(s)=ms2+cs+k1=s2+cs/m+k/m1/m
对于欠阻尼系统求解这个系统的特征方程(分母),得到系统极点
λ , λ ∗ = − ζ ω n ± ( ζ ω n ) 2 − ω n 2 = ζ ω ± i ω d \lambda,\lambda^*=-\zeta \omega_n \pm \sqrt{(\zeta \omega_n)^2-\omega_n^2}=\zeta \omega \pm i \omega_d λ,λ∗=−ζωn±(ζωn)2−ωn2=ζω±iωd
式中是 ζ \zeta ζ阻尼比, ω n \omega_n ωn 是无阻尼固有频率, ω d \omega_d ωd是有阻尼固有频率,定义分别如下 :
ζ = c 2 m k \zeta=\frac{c}{2 \sqrt{mk}} ζ=2mkc
ω n = k m 或者 f n = 1 2 π k m \omega_n=\sqrt{\frac{k}{m}} \ \ \ \ 或者\ \ \ \ f_n=\frac{1}{2\pi} \sqrt{\frac{k}{m}} ωn=mk