层次分析法的工具:
(1)权重分析表:以此图为例分析可以用层次分析法解决的评价类问题,目标问题是高考完后去旅游,目标地点有苏杭,北戴河以及桂林,为了合理选择我们设置了景色,花费,居住,饮食以及交通等5个指标
值得注意的是每一相同颜色的格子之和为1,即权重总和为1
(2)利用重要程度表分而治之地解决权重问题:解决上面每个同颜色格子权重和为1的工具
先得到指标的判断矩阵
再得到每个选择相对于每个指标的判断矩阵
判断矩阵可能出错的地方:
出错的原因:再第一列中看似给出的是每个选择地点相对于苏杭的心仪程度,实则也暗含了每个选择之间的程度关系,比如第一列中北戴河比桂林是1:2,而第三列中北戴河比桂林又成了2:1,所以出现了矛盾,导致了不一致的问题。
由此我们不禁可以推断出一致矩阵的性质:每一行每一列均成比例
由上图可见,当一个矩阵越接近一致矩阵时,该矩阵的特征值也就越接近n
但是在实际问题的解决中,考虑到对于一个事物打分的复杂性,不可能做到对一件事物打分的完全合理性,所以我们在一个矩阵接近一致矩阵并通过一致性检验时时,便考虑让其近似为一致矩阵
利用一致矩阵或者接近一致矩阵的矩阵来计算权重:
对上文的总结:
论文撰写:
一致矩阵利用特征向量法求权重:
一般的可以通过一致性检验的矩阵的权重求法:
补充内容:层次分析法当某些准则只对应一部分方案时,把不对应的方案在该准则中的权重记为0即可个人总结:层次分析法的好处在于利用判断矩阵通过两两比较某两个方案在某个准则中的程度来得到该方案的权重,避免了 一次性填完表格造成的误差,思想挺好,但是没有什么用