在人工智能的世界里,大型语言模型(LLMs)无疑是最引人注目的明星之一。这些深度神经网络模型的出现,为自然语言处理(NLP)领域带来了前所未有的变革。
那么,这些模型究竟是如何工作的?它们又是如何从简单的语言处理任务进化到能够理解和生成复杂文本的呢?Sebastian Raschka最近发布的livebook《Build a Large Language Model (From Scratch) 》这本书为我们揭开了这些神秘的面纱。
这次想和大家说的其实是这本书开源的配套代码,类似的关于机器学习的书我以前也写过,以我的经验来看,这种书的精华都在配套的代码里面,尤其是开源的notebook:
如果时间够的话,建议大家所有的几个代码都过一遍,对于理解大模型还是很有帮助的。如果时间不够就看每章的主notebook(和章节同名的)就可以了。分别是:
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
<img src=“https://img-blog.csdnimg.cn/img_convert/8f38eac6ba1479c3c487f22a34237ccf.png” style=“margin: auto”
Chapter 2: Working with Text
主要是讲解各种文本处理方法,包括embedding、token、位置编码等等。
Chapter 3: Coding Attention Mechanisms
这章主要介绍Attention机制,代码解释的很细,图文并茂。
Chapter 4: Implementing a GPT model from Scratch To Generate Text
这章就是真正的手搓大模型了,这章带大家一步步的构建一个类似GPT的大模型,包括构建架构,Normalize等等,直到生成文本。
Chapter 5: Pretraining on Unlabeled Data
这章主要讲解如何使用未标注数据进行训练。
《自然语言处理:大模型理论实践》(预览版)一书以自然语言处理中语言模型为主线,**涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。
自然语言处理一直是人工智能最热门的应用研究领域,对科学技术、文化教育、经济社会的发展各个方面都具有极其重大的意义。近年以来,以ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前所未有的进步。
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
作者
01 资源目录