AI问答系统与对话机器人服务(一)

本文介绍了如何使用QnA Maker建立知识库,详细阐述了在Azure中申请QnA Maker服务的过程,并展示了如何在QnA Maker网站上创建和测试知识库。此外,还探讨了知识库与Bot Service的结合,以及如何用Python代码访问QnA知识库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识要点

  • 微软认知服务中知识库服务的申请与搭建

  • 如何用REST API访问知识库数据

  • 微软认知服务中机器人服务的申请与搭建

  • 如何无缝集成知识库服务与机器人服务

建立知识库

什么叫QnA Maker?

知识库,就是人们总结出的一些历史知识的集合,存储、索引以后,可以被方便的检索出来供后人查询/学习。QnA Maker是用于建立知识库的工具,使用 QnA Maker,可以根据 FAQ(常见问题解答)文档或者 URL 和产品手册等半结构化内容打造一项问题与解答服务。 可以生成一个问题与解答模型,以便灵活地应对用户查询,即用户不必输入精确的查询条件,而是提供以自然对话方式受训的机器人来响应。

下图中是知识库与Bot Service的结合使用架构图:

img

与“半结构化数据”并列的是“结构化数据”和“非结构化数据”,其中结构化数据可以用关系式数据库来解决,非结构化数据用搜索引擎技术来解决。实际上搜索引擎就是把散落在互联网各个角落的非结构信息变成半结构化或结构化信息。

不同于搜索引擎,本文介绍的基于半结构化数据的QnA系统实现方式,是基于小规模数据量的,比如Million级别,而搜索引擎的技术要高级很多,因为要面对Billion级别的数据。但是从原理上讲,大家可以管中窥豹可见一斑。

在Azure中申请QnA Maker服务

用MSA登录Azure门户,点击“创建资源”,然后点击“AI + Machine Learning”:

在下图中点击“查看全部”:

img

在下图中点击“更多:”

img

在下图中点击“QnA Maker”:

img

在下图中的有红色*的输入框中,输入必要的信息,比如在Name中输入“ SchoolQASystem”:

点击“创建”后,稍等一会儿,会得到以下通知消息:

img

小提示:可以点击“固定到仪表板”,方便后续查找。

至此,我们的QnA服务已经申请好了,下一步是建立知识库,填写数据。

在QnA Maker网站上建立知识库

用Edge浏览器打开https://www.qnamaker.ai,登录自己的MSA账号。如果是第一进入该网站,你的My knowledge bases将会是空白页,点击Create a knowledge base来建立自己的第一个知识库:

img

小提示:这里用的MSA账号应该与申请认知服务的MSA账号相同。

STEP 1我们已经做过了,现在在STEP 2中从下拉列表中选择自己的相关信息:

在STEP 3中填写一个知识库的名字,比如SchoolQASystemKB:

img

在STEP 5中点击“Create your KB”来建立知识库:

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值