项目背景
当下,各种 LLM(Large Language Model)模型井喷式发展,其威力和能力已经不言而喻。但是,当开发者基于LLM做下游应用时,我们需要将LLM生成的结果与其他程序做数据交互,但大多数时候LLM直接生成的结果无论是格式还是内容上都存在太多不确定性因素,导致开发者需要对输出结果做大量的正则化处理才能被下游程序使用,甚至还经常出现键值对报错的问题。为此,我们做了这款名为 LLM2Json 的工具,帮助开发者构建高质量的输出Prompts和得到更好的JSON格式输出结果。
⚡LLM2Json⚡是一个易于使用的格式化大语言模型输出工具包,它的主要设计思想和部分实现代码参考 LangChain(但输出效果初步测试优于Langchain)。它可以通过自动构建prompts引导大语言模型输出符合JSON语法的返回数据,解决了大语言模型格式化输出、数据交互、前端开发等遇到的数据格式相关问题,使下游的应用程序、GPTs、Agents等开发更加方便快捷。
❓ Why JSON?
以下内容引自:https://www.json.org/json-zh.html
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。 易于人阅读和编写。同时也易于机器解析和生成。 它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, Java, JavaScript, Perl, Python等)。 这些特性使JSON成为理想的数据交换语言。
JSON建构于两种结构:
“名称/值”对的集合(A collection of name/value pairs)。不同的语言中,它被理解为对象(object),纪录(record),结构(struct),字典(dictionary),哈希表(hash table),有键列表(keyed list),或者关联数组 (associative array)。
值的有序列表(An ordered list of values)。在大部分语言中,它被理解为数组(array)。
这些都是常见的数据结构。事实上大部分现代计算机语言都以某种形式支持它们。这使得一种数据格式在同样基于这些结构的编程语言之间交换成为可能。
🚀快速开始
我们以“小红书营销内容生成”为案例,假如我们的数据库有三个字段,分别是 title(标题)、context(正文内容)和keywords(标签或关键词),我们希望使用ERNIEBot全部生成这些内容,并输出成JSON格式,方便交由下级的数据插入程序将生成的内容直接插入数据库,省去中间对生成内容的判断、匹配和清洗过滤的步骤。
1. pip 安装
安装完成后,请重启内核!!!
In [ ]
!pip install llm2json
!pip install erniebot
2. 配置Token
配置ERNIE Bot SDK的Token,如果你是使用其他LLM模型的可以忽略这步骤,但如果你继续在本notebook运行的,请务必配置!Token获取路径:https://aistudio.baidu.com/index/accessToken
In [2]
ERNIETOKEN = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
3. 封装ERNIEBot
In [3]
import erniebot
erniebot.api_type = "aistudio"
erniebot.access_token = ERNIETOKEN
def ernieChat(content):
response = erniebot.ChatCompletion.create(model="ernie-3.5",
messages=[{"role": "user", "content": content}])
return response.get_result()
4. 构造返回数据结构体
In [4]
from llm2json.prompts.schema import BaseModel, Field
class Xiaohongshu(BaseModel):
title: str = Field(description="文章标题")
context: str = Field(description = "正文内容")
keywords: list = Field(description = "关键词")
5. 给定返回数据正确案例
(可选项,但建议配置)****
In [5]
correct_example = '{"title":"文章标题", "context":"正文内容", "keywords":["关键词1","关键词2"]}'
6. 生成模板
In [6]
from llm2json.prompts import Templates
t = Templates(prompt="""
请你为商品:<{topic}>写一篇小红书文案。
包括文章标题、正文内容和关键词,同时正文需要包含emoji表情
""",
field=Xiaohongshu,
correct_example=correct_example)
template = t.invoke(topic="文心牌润唇膏")
7. 格式化返回结果
In [8]
from pprint import pprint
from llm2json.output import JSONParser
ernieResult = ernieChat(template)
parser = JSONParser()
pprint(parser.to_dict(ernieResult))
{'context': '🔥文心牌润唇膏,拥有独特的保湿配方,能够深层滋润双唇,让唇部肌肤水润有光泽。💦轻轻一抹,唇膏质地滑顺,不会产生厚重感,同时为唇部提供持久保护。💋在干燥的冬季或空调房间,它都能让你的双唇保持柔软舒适。😍无论是要赴约、拍照还是日常妆容,它都是不可或缺的秘密武器。💋',
'keywords': ['文心牌润唇膏', '保湿配方', '深层滋润', '持久保护', '柔软舒适', '秘密武器'],
'title': '💄文心牌润唇膏,滋润双唇的秘密武器!'}
以上我们就得到了一个字典类型的数据,如果需要JSON数据的话,我们将to_dict
替换为to_json
即可。那么,我们怎么去验证这是不是字典呢,很简单,我们试下能不能直接读取里面的键值对就可以了。
In [9]
result = parser.to_dict(ernieResult)
print(result["title"])
💄文心牌润唇膏,滋润双唇的秘密武器!
成功了!
为了展示这款工具的潜力,我下面再展示几组实例供大家参考学习。
📚演示案例
1. 情感分类
In [10]
from pprint import pprint
class Senta(BaseModel):
sentiment: str = Field(description="情感倾向,取值为positive或negative")
t = Templates(prompt="""
我会给你一段评论,请你判断这段评论是正面还是负面的。
评论内容是:{sentiment}
""",
field=Senta,
)
template = t.invoke(sentiment="蛋糕味道不错,店家服务也很热情")
ernieResult = ernieChat(template)
parser = JSONParser()
pprint(parser.to_dict(ernieResult))
{'sentiment': 'positive'}
2. 地址提取
In [11]
from pprint import pprint
class Address(BaseModel):
city: str = Field(description="地级市")
t = Templates(prompt="""
我会给你一个地址,请你从中提取出地级市名称。
地址是:{address}
""",
field=Address,
)
template = t.invoke(address="湖北省武汉市汉阳区琴台大道附近")
ernieResult = ernieChat(template)
parser = JSONParser()
pprint(parser.to_dict(ernieResult))
{'city': '武汉市'}
3. 生成模拟数据
In [12]
from pprint import pprint
class Data(BaseModel):
name: str = Field(description="姓名")
idcode: str = Field(description="18位数的身份证号")
sex: str = Field(description="性别")
phone: str = Field(description="手机号")
email: str = Field(description="邮箱")
address: str = Field(description="居住地址")
date: str = Field(description="入职日期")
t = Templates(prompt="""
请你根据模板生成入职人员测试数据
""",
field=Data,
)
template = t.invoke()
ernieResult = ernieChat(template)
parser = JSONParser()
pprint(parser.to_dict(ernieResult))
{'address': '北京市朝阳区XXX路XXX号',
'date': '2023-06-25',
'email': 'zhangsan@example.com',
'idcode': '110101199003077777',
'name': '张三',
'phone': '13800000000',
'sex': '男'}
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓