来啦,很久没给大家更新大模型的新书了,这次拿到了这本24年9月的新书,给大家详细介绍一波,就是这本《大模型RAG实战-RAG原理、应用与系统构建》
这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。
书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。
👉大模型大礼包🎁:这本《大模型RAG实战-RAG原理、应用与系统构建》已经下载并打包好了免费分享(↓↓↓↓↓↓)👈
通过阅读本书,你将掌握以下知识:
RAG的召回和生成模块算法
高级RAG系统的构建技巧
RAG系统的各种训练方法
RAG的范式变迁
零基础搭建RAG系统
高级RAG系统微调与搭建
作者简介
汪鹏
资深NLP技术专家和AI技术专家,拥有多年NLP落地经验。擅长结合用户场景,针对性地设计图谱、问答、检索、多模态、AIGC等相关的算法和落地方案。在Kaggle获得多枚奖牌,等级master。拥有公众号“NLP前沿”。
谷清水
毕业于清华大学,有国内多家大厂工作经历,7年深度学习项目开发经验。在KDD-CUP等机器学习竞赛中多次获奖,持有多项发明专利。知乎ID:“战士金”。
卞龙鹏
某上市公司资深AI算法工程师,多年互联网一线工作经验,10年机器学习与数据挖掘经验。持多项发明专利,发表多篇SCI文章,主攻机器视觉、模式识别、自然语言处理。
目 录 Contents
第一部分 基础
第1章 RAG与大模型应用 2
-
1.1 大模型应用的方向:RAG 2
-
1.2 为什么需要RAG 6
-
1.3 RAG的工作流程 9
-
1.4 RAG的优缺点 12
-
1.5 RAG的使用场景 14
-
1.6 RAG面临的挑战 16
-
1.7 本章小结 19
第2章 语言模型基础 20
-
2.1 Transformer 20
-
2.2 自动编码器 41
-
2.3 自回归模型 47
-
2.4 本章小结 56
第3章 文本召回模型 58
-
3.1 文本召回模型基础 58
-
3.2 稠密向量检索模型 61
-
3.3 稀疏向量检索模型 67
-
3.4 重排序模型 71
-
3.5 本章小结 72
第二部分 原理
第4章 RAG核心技术与优化方法 74
-
4.1 提示词工程 74
-
4.2 文本切块 83
-
4.3 向量数据库 87
-
4.4 召回环节优化 94
-
4.5 效果评估 107
-
4.6 LLM能力优化 115
-
4.7 本章小结 120
第5章 RAG范式演变 121
-
5.1 基础RAG系统 121
-
5.2 先进RAG系统 125
-
5.3 大模型主导的RAG系统 127
-
5.4 多模态RAG系统 131
-
5.5 本章小结 135
第6章 RAG系统训练 136
-
6.1 RAG系统的训练难点 136
-
6.2 训练方法 138
-
6.3 独立训练 138
-
6.4 序贯训练 139
-
6.5 联合训练 143
-
6.6 本章小结 149
第三部分 实战
第7章 基于LangChain实现RAG应用 152
-
7.1 LangChain基础模块 152
-
7.2 基于LangChain实现RAG 156
-
7.3 基于Streamlit搭建一个ChatPDF可视化应用 158
-
7.4 本章小结 161
第8章 RAG系统构建与微调实战 162
-
8.1 向量模型构建 162
-
8.2 大模型指令微调 175
-
8.3 复杂问题处理 179
-
8.4 本章小结 203
👉大模型大礼包🎁:这本《大模型RAG实战-RAG原理、应用与系统构建》已经下载并打包好了免费分享(↓↓↓↓↓↓)👈