当前,我们正处在Agent开发的‘工程化转折点’。打造一个真正“可上线”的Agent系统,不再只是拼接组件,而是围绕四个核心模块进行有机组合。
在大模型持续进化的今天,Agent 成为很多人眼中的“超级助手”,从代码编写到数据分析、从网页问答到知识检索,它无所不能。但如果你尝试亲自“造一个Agent”,很快会发现一个现实问题:
💥 框架太多,套路太杂,效果却难以复用上线。
这是因为,大多数教程和开源项目,讲的是功能拼接,但真正想把Agent用于业务场景,就必须从“系统工程”的角度去看。
📌 我们需要构建的不是“智能体”,而是系统
不是“大模型+插件=Agent”,而是一个具有输入、输出、记忆与执行能力的系统。这才是Agent的工程化本质。
目前已有多个Agent框架(如LangChain、CrewAI、AutoGen、Letta、MetaGPT、LangGraph),它们可以统一看作是在不同方式下对Agent系统工程的模块化抽象与实现。
🧩 一个完整Agent系统的四大核心模块
下面是构建Agent系统的“四大支柱模块”,它们分别解决不同层次的问题:
1️⃣ Memory:Agent的记忆层
负责状态的维护与记忆。
Agent不是一次对话工具,它需要理解上下文、记住对话历史、追踪任务进展。这就需要一个记忆管理系统。
📚 常见实践:
-
LangChain 的 ConversationBufferMemory/ SummaryMemory
-
Letta 的“状态感知式存储”
-
MemGPT 的持久型 memory chunk
💡 记忆管理不仅仅是存储文本,更包含对用户意图、任务状态的建模与更新。
2️⃣ Tools:Agent的行动能力
用来增强大模型的能力,让它可以真正“做事”。
大模型擅长“说”,但不会“做”。通过工具调用,Agent才能真正与外部世界交互:查资料、调API、读数据库、处理Excel。
🔧 常见工具接入方式:
-
LangChain 的 tool decorators
-
OpenAI Function Calling
-
AutoGen 的工具节点(ToolNode)
-
CrewAI 的 tool worker 机制
🔍 举例:
-
搜索引擎(Search API)
-
数据库查询(SQL、Vector Store)
-
Web 控制器(Selenium、Playwright)
-
代码执行器(Code Interpreter)
3️⃣ Control:Agent的大脑机制
决定Agent如何推理、规划、控制执行路径。
如果把Memory和Tool比作Agent的“知识库”和“手脚”,那么Control就是它的“大脑”——控制Agent的行为流程、调用顺序、任务分解。
🧠 常见控制机制:
-
Prompt模板 + ReAct(推理+行动)
-
Planner / Reasoner(LangChain 的 Plan-and-Execute)
-
LangGraph 的状态机流转
-
多Agent协作控制(AutoGen,CrewAI)
📌 控制机制的好坏,直接影响Agent的行为是否稳定、合理、有边界。
4️⃣ Environment:Agent的运行环境
Agent需要与现实世界交互,因此必须设计其“工作环境”。
Agent最终不是在Jupyter或Colab里运行的,而是部署到真实系统中。因此它需要有一个与外部系统打通的“环境层”。
🖥 实用场景:
-
Gradio / Streamlit:构建交互页面
-
企业微信 / Slack:企业内部部署
-
Web插件 / Chrome扩展:网页问答助手
-
Serverless或微服务系统中部署API Agent
💡 Environment的设计决定了Agent是否真正能融入业务流程、服务用户,而不是“演示用”。
🔁 四大模块之间如何协作?
一个优秀的Agent系统不是模块简单叠加,而是通过清晰的边界设计与调用链路,实现输入 → 控制 → 工具调用/记忆获取 → 输出 → 反馈更新的闭环。
比如:
用户输入「请帮我查下A公司的近三年财报」 →
Control模块判断需要搜索 + 调用财报API →
Tool模块完成请求 →
Memory记录用户意图和已完成的查询任务 →
Environment层将结果反馈到网页端 →
用户继续提问或结束任务。
🚀 结语:工程化设计,让Agent从“玩具”走向“应用”
如果你正打算构建一个能服务真实业务场景的Agent,不妨先问自己:
-
你的Agent有记忆吗?是持久的还是临时的?
-
它有哪些工具能力?调用路径是否稳定可控?
-
它能自己决定调用哪个工具吗?
-
它运行在哪?用户如何使用它?
这些问题不是“加功能”,而是“构系统”。
🌱 真正的Agent系统,不是万能的GPT工具箱,而是一个可以逐步生长、长期迭代的智能系统。
最后送上AI智能体开源堆栈的组件:
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓