Ollama-python:调用大模型服务实现代码自动补全,提升编程开发效率!

Ollama 是一个优秀的本地部署与管理大模型的框架。通过 Ollama,我们可以在本地部署、定制自己的大模型服务。大模型部署在本地后,我们可以有哪些应用呢?本文介绍如何通过 Ollama 的 python sdk,调用本地部署的大模型服务,对我们的代码进行自动补全,提升日常的编程开发效率

安装 Ollama 及其 python sdk

https://ollama.com/download 下载 Ollama 安装程序并安装到本地,安装步骤可阅读:,可通过安装命令、环境变量的设置,配置安装路径和大模型的存储目录。详细的安装步骤,可阅读:大模型本地部署开源框架 Ollama 介绍
打开终端命令窗口,运行命令:pip install ollama,安装 ollama 的 python sdk。

模型下载

在 Ollama 的模型搜索页面,选择适用于编程领域的大模型进行下载。目前适用于编程领域的较流行开源大模型有:

  1. 阿里的 qwen2.5-coder:https://ollama.com/library/qwen2.5-coder
  2. 深度求索 DeepSeek 的 deepseek-coder-v2:https://ollama.com/library/deepseek-coder-v2
  3. 零一万物的 yi-coder:https://ollama.com/library/yi-coder
  4. Meta 的 codellama:https://ollama.com/library/codellama
  5. 谷歌的 codegemma:https://ollama.com/library/codegemma

上述大模型均可以在 Ollama 的模型页搜索查看。本文以 Qwen2.5-Coder 型为例。Qwen2.5-Coder 基于 Qwen2.5 架构构建,专为代码生成、代码推理和代码修复任务进行了优化。该系列模型提供六种不同规模的版本,分别是 0.5B、1.5B、3B、7B、14B 和 32B。其中,32B 模型在性能上与 OpenAI 的 GPT-4o 相媲美。
选择合适自己电脑资源配置的参数规格,进行模型下载(若本地机器资源充足,可选择参数量大的模型)。

打开终端命令窗口,运行命令:ollama pull ollama run qwen2.5-coder:7b ,即可将模型下载到本地。
下面介绍两个例子,展示如何使用 Ollama 的 python sdk,调用 Qwen2.5-Coder 模型来生成代码片段。

去除字符串中的非ASCII字符

代码函数目标:移除字符串中的非 ASCII 字符。

  • 创建了一个 Client 实例,用于与 Ollama 服务进行通信。
  • prompt 是一个字符串,包含了需要补全的代码片段的开头部分。这里定义了一个函数 remove_non_ascii,并提供了一个文档字符串的开头。其中 “功能:”字符,可以提示大模型生成中文的函数注释。
  • suffix 是一个字符串,表示代码片段的结尾部分。这里定义了函数的返回语句。通过 prompt 和 suffix,模型需要生成中间的代码逻辑。
  • model='qwen2.5-coder:7b',指定要调用的大模型服务。
  • client.generate 方法用于调用指定的模型生成代码。options 为生成选项,用于控制生成行为。
    • num_predict=128 表示生成的 token 数量上限;
    • temperature=0 为温度参数,控制生成的随机性。0 表示生成最确定的结果;
    • top_p 用于控制生成文本的多样性,其值在 0 到 1 之间。值越高,文本的多样性越高。
    • stop=['<EOT>']:停止生成的标记,当模型生成到<EOT>时停止。
from ollama import Client

client = Client()

# 定义函数开头部分,提示模型需要补全的功能
prompt = '''def remove_non_ascii(s: str) -> str:
    """
    功能: 
    '''
# 定义函数结尾部分,提示模型生成的代码需要与之衔接
suffix = """
    return result
"""

# 调用 Qwen2.5-Coder 模型生成代码
response = client.generate(
    model='qwen2.5-coder:7b',
    prompt=prompt,
    suffix=suffix,
    options={
        'num_predict': 128,
        'temperature': 0,
        'top_p': 0.9,
        'stop': ['<EOT>'],
    },
)

# 打印生成的代码片段
print(response['response'])

模型响应:

根据大模型生成的代码片段,完整的函数如下:

def remove_non_ascii(s: str) -> str:
    """
    功能:去除字符串中的非ASCII字符。
    参数:
    s (str): 输入的字符串。

    返回值:
    str: 去除非ASCII字符后的字符串。
    """
    result = ''.join([char for char in s if ord(char) < 128])
    return result

计算股票的最大回撤

以金融领域的股票最大回撤计算为例。最大回撤是指在某一特定时间段内,资产价格从最高点到最低点的最大跌幅。它反映了投资者在持有资产期间可能面临的最大潜在损失。最大回撤=(峰值价格 - 谷值价格)/峰值价格。

  • 峰值价格:在某一时间段内的最高价格。
  • 谷值价格:在峰值价格之后的最低价格。

函数目标:根据某只股票在一段时期的行情序列,计算并返回这段时期的最大回撤。

from ollama import Client

client = Client()

# 定义函数开头部分,提示模型需要补全的功能
prompt = '''def calculate_max_drawdown(prices: list[float]) -> float:
    """
    计算股票价格序列的最大回撤率
    '''

# 定义函数结尾部分,提示模型生成的代码需要与之衔接
suffix = """
    return max_drawdown
"""

# 调用 Qwen2.5-Coder 模型生成代码
response = client.generate(
    model='qwen2.5-coder:7b',  
    prompt=prompt,
    suffix=suffix,
    options={
        'num_predict': 2046,
        'temperature': 0,
        'top_p': 0.9,
        'stop': ['<EOT>'],
    }
)

print("生成的代码逻辑:\n" + response['response'])

模型响应:

根据大模型生成的代码片段,完整的函数如下(不仅实现了股票最大回撤的计算逻辑,还可以根据输入数据的异常情况,抛出异常):

def calculate_max_drawdown(prices: list[float]) -> float:
    """
    计算股票价格序列的最大回撤率
    :param prices: 股票价格列表,按时间顺序排列
    :return: 最大回撤率(以百分比表示)
    """
    if not prices or len(prices) < 2:
        raise ValueError("价格序列至少需要两个数据点")

    max_price = prices[0]
    max_drawdown = 0.0

    for price in prices:
        if price > max_price:
            max_price = price
        drawdown = (max_price - price) / max_price
        if drawdown > max_drawdown:
            max_drawdown = drawdown

    # 将回撤率转换为百分比
    max_drawdown *= 100.0
    return max_drawdown

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值