Ollama 是一个优秀的本地部署与管理大模型的框架。通过 Ollama,我们可以在本地部署、定制自己的大模型服务。大模型部署在本地后,我们可以有哪些应用呢?本文介绍如何通过 Ollama 的 python sdk,调用本地部署的大模型服务,对我们的代码进行自动补全,提升日常的编程开发效率。
安装 Ollama 及其 python sdk
在 https://ollama.com/download 下载 Ollama 安装程序并安装到本地,安装步骤可阅读:,可通过安装命令、环境变量的设置,配置安装路径和大模型的存储目录。详细的安装步骤,可阅读:大模型本地部署开源框架 Ollama 介绍。
打开终端命令窗口,运行命令:pip install ollama,安装 ollama 的 python sdk。
模型下载
在 Ollama 的模型搜索页面,选择适用于编程领域的大模型进行下载。目前适用于编程领域的较流行开源大模型有:
- 阿里的 qwen2.5-coder:https://ollama.com/library/qwen2.5-coder
- 深度求索 DeepSeek 的 deepseek-coder-v2:https://ollama.com/library/deepseek-coder-v2
- 零一万物的 yi-coder:https://ollama.com/library/yi-coder
- Meta 的 codellama:https://ollama.com/library/codellama
- 谷歌的 codegemma:https://ollama.com/library/codegemma
上述大模型均可以在 Ollama 的模型页搜索查看。本文以 Qwen2.5-Coder 型为例。Qwen2.5-Coder 基于 Qwen2.5 架构构建,专为代码生成、代码推理和代码修复任务进行了优化。该系列模型提供六种不同规模的版本,分别是 0.5B、1.5B、3B、7B、14B 和 32B。其中,32B 模型在性能上与 OpenAI 的 GPT-4o 相媲美。
选择合适自己电脑资源配置的参数规格,进行模型下载(若本地机器资源充足,可选择参数量大的模型)。
打开终端命令窗口,运行命令:ollama pull ollama run qwen2.5-coder:7b ,即可将模型下载到本地。
下面介绍两个例子,展示如何使用 Ollama 的 python sdk,调用 Qwen2.5-Coder 模型来生成代码片段。
去除字符串中的非ASCII字符
代码函数目标:移除字符串中的非 ASCII 字符。
- 创建了一个 Client 实例,用于与 Ollama 服务进行通信。
- prompt 是一个字符串,包含了需要补全的代码片段的开头部分。这里定义了一个函数 remove_non_ascii,并提供了一个文档字符串的开头。其中 “功能:”字符,可以提示大模型生成中文的函数注释。
- suffix 是一个字符串,表示代码片段的结尾部分。这里定义了函数的返回语句。通过 prompt 和 suffix,模型需要生成中间的代码逻辑。
- model='qwen2.5-coder:7b',指定要调用的大模型服务。
- client.generate 方法用于调用指定的模型生成代码。options 为生成选项,用于控制生成行为。
- num_predict=128 表示生成的 token 数量上限;
- temperature=0 为温度参数,控制生成的随机性。0 表示生成最确定的结果;
- top_p 用于控制生成文本的多样性,其值在 0 到 1 之间。值越高,文本的多样性越高。
- stop=['<EOT>']:停止生成的标记,当模型生成到<EOT>时停止。
from ollama import Client
client = Client()
# 定义函数开头部分,提示模型需要补全的功能
prompt = '''def remove_non_ascii(s: str) -> str:
"""
功能:
'''
# 定义函数结尾部分,提示模型生成的代码需要与之衔接
suffix = """
return result
"""
# 调用 Qwen2.5-Coder 模型生成代码
response = client.generate(
model='qwen2.5-coder:7b',
prompt=prompt,
suffix=suffix,
options={
'num_predict': 128,
'temperature': 0,
'top_p': 0.9,
'stop': ['<EOT>'],
},
)
# 打印生成的代码片段
print(response['response'])
模型响应:
根据大模型生成的代码片段,完整的函数如下:
def remove_non_ascii(s: str) -> str:
"""
功能:去除字符串中的非ASCII字符。
参数:
s (str): 输入的字符串。
返回值:
str: 去除非ASCII字符后的字符串。
"""
result = ''.join([char for char in s if ord(char) < 128])
return result
计算股票的最大回撤
以金融领域的股票最大回撤计算为例。最大回撤是指在某一特定时间段内,资产价格从最高点到最低点的最大跌幅。它反映了投资者在持有资产期间可能面临的最大潜在损失。最大回撤=(峰值价格 - 谷值价格)/峰值价格。
- 峰值价格:在某一时间段内的最高价格。
- 谷值价格:在峰值价格之后的最低价格。
函数目标:根据某只股票在一段时期的行情序列,计算并返回这段时期的最大回撤。
from ollama import Client
client = Client()
# 定义函数开头部分,提示模型需要补全的功能
prompt = '''def calculate_max_drawdown(prices: list[float]) -> float:
"""
计算股票价格序列的最大回撤率
'''
# 定义函数结尾部分,提示模型生成的代码需要与之衔接
suffix = """
return max_drawdown
"""
# 调用 Qwen2.5-Coder 模型生成代码
response = client.generate(
model='qwen2.5-coder:7b',
prompt=prompt,
suffix=suffix,
options={
'num_predict': 2046,
'temperature': 0,
'top_p': 0.9,
'stop': ['<EOT>'],
}
)
print("生成的代码逻辑:\n" + response['response'])
模型响应:
根据大模型生成的代码片段,完整的函数如下(不仅实现了股票最大回撤的计算逻辑,还可以根据输入数据的异常情况,抛出异常):
def calculate_max_drawdown(prices: list[float]) -> float:
"""
计算股票价格序列的最大回撤率
:param prices: 股票价格列表,按时间顺序排列
:return: 最大回撤率(以百分比表示)
"""
if not prices or len(prices) < 2:
raise ValueError("价格序列至少需要两个数据点")
max_price = prices[0]
max_drawdown = 0.0
for price in prices:
if price > max_price:
max_price = price
drawdown = (max_price - price) / max_price
if drawdown > max_drawdown:
max_drawdown = drawdown
# 将回撤率转换为百分比
max_drawdown *= 100.0
return max_drawdown
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓