大模型本地部署开源框架 Ollama 介绍

Ollama 是一个本地部署大模型的开源框架,降低了本地部署和管理大模型的门槛,且提供了丰富的开源大模型库,值得开发者学习和使用。本文简单介绍了 Ollama 的特性、应用场景,本地安装和运行大模型的步骤。

Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。Ollama 是 Omni-Layer Learning Language Acquisition Model 的简写,这代表一种新颖的机器学习方法,承诺重新定义我们对语言习得和自然语言处理的看法。

Ollama的关键特性:

  • 本地执行:Ollama 的一个显著特点是其能够本地运行 LLMs,减轻了与基于云的解决方案相关的隐私问题。通过将AI 模型直接带到用户的设备上,Ollama 确保了对数据的更大控制和安全性,同时提供了更快的处理速度和减少对外部服务器的依赖。
  • 丰富的模型库:Ollama 提供了丰富的预训练 LLMs 库,包括流行的模型(如,Llama 3)。用户可以具体的需求,针对不同任务、领域和硬件能力,选择合适的模型,确保了 AI 项目的灵活性和多功能性。
  • 无缝集成:Ollama 可与各种工具、框架和编程语言无缝集成,使开发者能够轻松地将 LLMs 纳入他们的工作流程中。无论是 Python、LangChain 还是 LlamaIndex,Ollama 为构建复杂的 AI 应用程序和解决方案提供了强大的集成选项。
  • 定制和微调:有了 Ollama,用户有能力定制和微调 LLMs 以满足他们的特定需求和偏好。从提示工程到少样本学习和微调过程,Ollama 赋予用户塑造 LLMs 行为和输出的能力,确保它们与预期目标一致。

Ollama 的出现,使得在本地运行大型语言模型变得更加容易和方便。Ollama 的应用场景有:

  • 创意写作和内容生成:作家和内容创作者可以利用 Ollama 来克服写作障碍,头脑风暴内容创意,并在不同体裁和格式中生成多样化和吸引人的内容。
  • 代码生成和辅助:开发人员可以利用 Ollama 的能力进行代码生成、解释、调试和文档编写,简化他们的开发工作流程并提高代码质量。
  • 语言翻译和本地化:Ollama 的语言理解和生成能力使其成为翻译、本地化和多语言沟通的宝贵工具,促进跨文化理解和全球合作。
  • 研究和知识发现:研究人员和知识工作者可以通过使用 Ollama,从大量的信息中进行分析、整合和提取洞察,提高知识获取的效率。涵盖文献综述、数据分析、假设生成和知识提取等场景。
  • 客户服务和支持:企业可以部署由 Ollama 驱动的智能聊天机器人和虚拟助手,以增强客户服务,自动化常见问题解答,提供个性化的产品推荐,并分析客户反馈以提高满意度和参与度。
  • 医疗保健和医疗应用:在医疗保健行业,Ollama 可以协助医疗文档编写、临床决策支持、患者教育、远程医疗和医学研究,提升医疗保健效率。

安装

以 windows 系统为例,安装步骤如下:

下载

进入官网下载页面(https://ollama.com/download),选择 windows 版本下载

安装

点击安装文件 OllamaSetup.exe,可直接进行安装。默认情况下,会安装在 C 盘上,会占用 C 盘的存储空间。可通过以下方式,变更 ollama 的安装路径:

打开 powershell,进入 OllamaSetup.exe,运行以下命令后(DIR 路径为安装路径,如"E:\developToolkit\ollama") ,会出现安装弹框,点击 Install,即可将 Ollama 安装到指定的路径。

OllamaSetup.exe /DIR="E:\developToolkit\ollama"

Ollama 安装弹窗:

安装完成后,在 powershell 输入 "ollama -v ",输出 Ollama 的版本信息,说明已安装成功。

设置大模型存储位置

要改变 Ollama 存储下载模型的位置(默认是存储在 C 盘的用户目录,会占用 C 盘的大量存储空间),可通过设置环境变量 OLLAMA_MODELS 的方式,设置大模型的存储位置。

  1. 启动设置(Windows 11)或控制面板(Windows 10)应用程序,并搜索环境变量。
  2. 点击为环境变量。点击新建一个系统变量。
  3. 编辑或创建一个新的变量 OLLAMA_MODELS ,指定希望模型存储的位置。
  4. 点击确定/应用以保存。

运行

选择大模型

进入 Ollama 的模型页面,选择要运行的大模型:https://ollama.com/search

以 qwen2.5 模型为例,选择模型规格(如,3b),拷贝模型标识(qwen2.5:3b)

在 powershell 窗口,输入命令:ollama pull qwen2.5:3b,完成模型的下载。

输入命令:ollama list,即可查看到本地的模型清单。由于我们之前设置的环境变量 OLLAMA_MODELS,大模型会存储到 OLLAMA_MODELS 指定的目录路径。

运行大模型

输入命令:ollama run qwen2.5:3b,即可运行刚才下载到本地的大模型,可在终端与大模型对话。

也可以通过 api 的方式,与本地运行的大模型进行交互:

(Invoke-WebRequest -method POST -Body '{"model":"qwen2.5:3b", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json

本文简单介绍了 Ollama 的特性、应用场景、安装、本地运行大模型。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值