RAG知识库只是表面简单!

你有没有想过,为什么同样是AI问答系统,有些答案精准如手术刀,有些却像老人家的唠叨?

当我们说"把文档丢进Dify就能搞定RAG"时,工程师们默默翻了个白眼——因为他们知道,真正的魔法发生在幕后。

图片

RAG:表面简单,内核复杂

前几天,产品经理小张兴冲冲地来找我:"我发现了个神器叫Dify,听说只要把公司文档灌进去,就能搭建一个智能客服。周末我试了下,真的超简单!"

我没忍住笑了:"那我们工程团队是不是可以裁一半?"

图片

RAG(Retrieval-Augmented Generation)表面看起来很简单:把文档转成向量存起来,用户提问时找到相关内容,喂给大模型生成答案。一条流水线,三个环节,似乎谁都能上手

可真实世界中,工程师们面对的是这样的场景:

医疗客服系统需要从上万份病历中提取准确信息;法律顾问需要从几百页合同中找出关键条款;技术支持需要从混乱的文档库中定位精确答案。

这时,简单部署已远远不够。

不信?我们来做个实验。

用同样的RAG框架处理两份文档:一份是结构清晰的产品手册,一份是杂乱无章的客户反馈。对于前者,基础RAG表现尚可;对于后者,没有工程调优的RAG可能会交出一份"胡言乱语"的答卷。

这就是工程师价值所在。

分块策略:RAG效果的决定性因素

昨天,团队刚解决了一个棘手问题:客户反馈AI回答内容前后矛盾。排查发现,原来是分块策略出了问题。

图片

分块策略就像切菜。切得太大,锅炉装不下;切得太小,营养流失;切得没有规律,火候掌握不好。

在RAG中,工程师的挑战在于:如何把文档切成AI能高效处理的单元

一位资深工程师曾告诉我:"优秀的分块策略能让检索准确率提升30%,这远比换一个更贵的模型效果好。"

从技术角度看,分块策略主要有五种:

固定大小分块像流水线工人,一刀切,简单但可能把完整概念切断;语义分块则像老厨师,按食材纹理切割,保留语义完整性;递归分块如同俄罗斯套娃,先大后小,层层分解;基于文档结构的分块遵循文档天然边界;基于LLM的分块则是高级玩法,让AI自己判断怎么切最合理。

每种策略适用不同场景。

金融报告适合结构化分块;技术文档适合语义分块;而对于混合内容,可能需要自定义策略。这就是为什么不能简单"灌入文档"就完事。

从"能用"到"好用"的工程挑战

上个月,竞争对手也上线了一个RAG系统。表面上看功能差不多,但用户反馈差距明显。同事笑称:"他们用的是'初级厨师'配方,我们用的是'米其林'标准。"

图片

RAG技术体系中,工程师的价值主要体现在这几个方面:

文档处理:真实世界的文档常常杂乱无章。工程师需要预处理文档,识别并修复格式问题,处理表格、图片等非文本内容。

检索优化:工程师通过算法调优,确保返回最相关内容,这涉及向量模型选择、相似度计算、召回策略等多个技术决策。

分块策略:根据业务特点选择和调整分块方法,确保语义连贯性和检索效果。

提示工程:设计问题模板和上下文组织方式,引导LLM生成更准确、更有用的回答。

业务集成:将RAG与现有系统无缝集成,处理用户认证、数据安全、访问控制等复杂问题。

结语

一个真正好用的RAG系统,需要在这些环节上反复调优。就像厨师不断调整配方和火候,工程师不断优化参数和策略,把系统从"能用"提升到"好用"。

这种深度工程能力,是任何现成工具都无法替代的。

我们的工程团队上线的RAG系统,经过三轮迭代,在客户满意度上提升了42%。这背后是无数次的测试、调整和优化,是工程师们对业务的理解和技术的把握。

所以,当有人说"RAG就是把文档灌进Dify"时,我总是笑而不语。

真正的挑战和价值,从文档进入系统的那一刻才刚刚开始

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值