前言
大模型的训练需要准备大量数据集,这些数据虽广泛涉猎,但缺少细节,缺乏垂直领域和行业信息。
训练和微调,可以解决这一问题,但需要消耗算力和时间,不适合需要频繁更新内容的场景。
简单来说,如果用于训练的数据集中没有我们想要的内容,大模型就无法回答相应的问题。那么有没有办法解决呢?
文本嵌入,可以让大模型拥有暂时的“记忆”。联网搜索就是典型案例,通过将搜索结果嵌入提示词,实现内容的灌注,让大模型能够结合搜索结果进行回答。
虽然联网搜索能解决大模型知识有限的情况,但通过搜索获得数据质量取决于互联网上的内容,有时甚至因为大模型的幻觉问题,导致张冠李戴、东拼西凑的问题。
为了解决这些问题,将联网搜索换成本地知识库的搜索,再加上一点点“处理”,就得到了RAG(Retrieval-Augmented Generation,检索信息增强)。
RAG的原理
为了得到高质量的知识库,大多数RAG的流程分为以下几步:
(1)文件处理(内容清洗)
(2)上传文件
(3)分段
(4)向量化(嵌入模型,Embedding)
(5)保存向量数据
在使用知识库问答时,通过以下几步进行结果输出:
(1)知识库向量检索
(2)检索结果重排序(重排序模型,Rerank)
(3)数据筛选
(4)筛选数据嵌入提示词
(5)大模型生成答案(大语言模型,LLM)看起来RAG的过程似乎有点复杂,不过不用担心,有很多开源工具已经帮我们实现了这些功能,比如Cherry Studio、Dify。现在只需要专注文件处理和工具的选择。
实战环节
以Cherry Studio为例,添加一个知识库,使用本地部署的嵌入模型bge-m3和重排序模型bge-reranker-v2-m3。
上传一个测试文件,并等待向量化完成。
进入聊天界面,选择刚才添加的知识库。
使用问题“聚葡萄糖食品标准是什么时候发布和实施的?”进行测试,结果显示正确,并给出引用的内容。
原理补充
看到这里,相信你已经对RAG有了一定的了解,但距离应用还很远。Cherry Studio提供的知识库功能非常有限,经过前面的使用仅仅是跑通了流程。随着知识库中内容的增加,可能会出现知识混淆、回答不准确的问题。
Dify,提供了更强大的知识库,RAG的流程更全面,细节更完整。Cherry Studio中没有的文件处理、分段、数据筛选、筛选数据嵌入提示词等工作,在Dify中也得到了体现。
首先是文件处理和分段,它提供了丰富的分段设置和处理选项。
其次,在通过向量检索和重排序后,还增加了进一步的数据筛选。
最后通过工作流的方式,自行编排知识库处理流程和文本嵌入。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓