目前,已经可以说人工智能(AI)是推动社会进步和产业升级的重要力量。其中,AI大模型作为人工智能领域的核心技术之一,正引领着新一轮的技术革命。
2025年,AI大模型开发工程师无疑成为了IT行业中最炙手可热的岗位之一,这不仅是市场需求的直接反映,更是AI技术发展的必然结果。
AI大模型开发的前景与优势
Learning
Let’s go!
前景广阔: 根据北京大学国家发展研究院与智联招聘联合发布的《AI大模型对我国劳动力市场潜在影响研究:2024》报告,AI大模型相关岗位的需求显著增加,特别是自然语言处理(NLP)和深度学习领域的岗位,招聘需求翻倍增长。这一趋势表明,随着AI技术在医疗、金融、智能家居等各行各业的广泛应用,AI大模型开发工程师的就业前景极为广阔。
薪资优厚: AI大模型开发工程师的薪资水平也处于行业前列。报告显示,自然语言处理和深度学习岗位的平均招聘月薪分别高达24007元和26279元,且增速领先。这充分证明了市场对AI大模型开发人才的高度认可和迫切需求。
技术引领: AI大模型工程师不仅是技术的使用者,更是技术的推动者。他们掌握着如GPT-4、BERT、Transformer等尖端技术,这些技术正在深刻改变着我们对人工智能的认知和应用。随着技术的不断进步,AI大模型开发工程师将在更多领域发挥关键作用。
AI大模型开发的工作内容
Learning
Let’s go!
AI大模型开发工程师的主要工作内容涵盖了从模型设计、训练到优化、部署的全过程。具体来说,他们需要:
深度学习和自然语言处理: 深入理解各种神经网络模型、注意力机制、序列建模和语言表示学习等技术,并将其应用于实际项目中。
模型设计与架构: 确定模型的整体结构,包括层数、参数数量和连接方式等,同时考虑模型的可扩展性、计算效率和内存占用等因素。
数据预处理与模型训练: 收集和准备大量文本数据,进行清洗、标记和表示转换等预处理步骤,然后使用强大的计算资源进行模型训练。
模型评估与优化: 使用各种评估指标和测试数据来评估模型的性能和质量,进行模型微调、网络剪枝或其他优化技术的应用。
团队协作与沟通: 与团队成员紧密合作,共同解决模型开发和部署过程中的挑战和问题。
AI大模型开发的核心能力
Learning
Let’s go!
扎实的数学和编程基础: AI大模型开发需要深厚的数学功底,如线性代数、微积分、概率统计等,同时需要熟练掌握至少一门编程语言(如Python),并了解数据结构和算法。
深度学习框架与工具: 熟悉并熟练使用流行的深度学习框架(如TensorFlow、PyTorch)和相关工具,能够实现和优化深度学习模型的代码。
数据处理与清洗: 具备数据处理和清洗的技术能力,以确保输入数据的质量,提高模型的性能和泛化能力。
持续学习与创新能力: AI领域不断发展,新技术层出不穷,AI大模型开发工程师需要保持对新技术和研究的敏感性,持续学习并创新应用。
沟通与协作能力: 在跨学科团队中有效沟通和协作,共同推动AI应用的实际落地。
对于想学习AI大模型开发的人群,以下是一条核心的学习建议:
系统学习与实践结合: 首先,打好坚实的数学和编程基础,掌握线性代数、微积分、概率统计等数学知识和Python等编程语言。其次,深入学习深度学习和自然语言处理领域的基础知识,包括各种神经网络模型、注意力机制等。同时,通过参与开源项目、阅读学术论文和参加学术会议等方式,了解最新的研究进展和技术动态。最后,通过动手实践来加深对知识的理解和掌握,可以从简单的模型实现开始,逐步挑战更复杂的问题。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓