AI正在深刻改变着软件开发的方式。在传统的开发模式中,程序员需要记忆大量的语法规则、API文档和最佳实践,这不仅增加了学习成本,还限制了开发效率。
Cursor最引人注目的特色在于其内置的AI助手系统。这个系统能够理解开发者的自然语言指令,通过上下文分析准确地把握开发者的意图,并提供相应的代码编写、修改建议和解决方案。
在编写代码过程中,它就像一个经验丰富的搭档,能够及时提供有价值的建议和帮助。无论是生成代码模板、解释复杂逻辑,还是进行代码重构,Cursor都能给出专业且实用的建议。在AI辅助编程时代,开发者可以将更多精力投入对问题本质的思考和架构设计中,让Cursor来处理那些烦琐的细节工作。
在软件开发的完整生命周期中,Cursor的作用贯穿始终。
-
需求分析阶段:Cursor能够帮助开发者更好地理解和梳理需求,通过自然语言处理技术,将用户描述的需求转化为具体的技术方案。
-
编写代码阶段:Cursor不仅能提供智能的代码生成和补全建议,还能帮助开发者发现潜在的问题和优化空间。
-
测试阶段:Cursor可以自动生成测试用例,分析代码覆盖率,帮助开发者提高代码质量。
-
维护阶段:Cursor能够协助进行代码重构,提供性能优化建议,甚至自动生成技术文档。
Cursor辅助编程示意图
通过Cursor的协助,开发效率得到了显著提高。实践数据表明,在使用Cursor后,开发者在处理重复性工作时可以节省40%~60%的时间,代码错误率平均降低了30%。更重要的是,Cursor的加入使得代码质量和可维护性得到了明显改善,项目交付速度随之加快。
Cursor工作流程图
什么是MCP
MCP是由Anthropic推出的一种开放标准协议,为开发者提供了一个强大的工具,能够在数据源和AI驱动工具之间建立安全的双向连接。这个说法可能不太好理解。我举一个生活中的例子:如果把AI工具比作电脑主机,那么MCP就相当于USB协议,而MCP Server则类似于各种USB设备(如摄像头、麦克风等)。通过实现MCP Server,我们可以让AI工具轻松地连接各种数据源,大大扩展其功能范围。
MCP可以帮助我们在大语言模型(LLM)之上构建智能代理和复杂工作流。由于LLM经常需要与数据和工具集成,因此MCP提供了可供LLM直接接入和持续增加的预构建集成列表、在不同的LLM供应商和厂商之间切换的灵活性、在你的基础设施内保护数据的最佳实践。
MCP的核心是客户端-服务器架构,如图所示。其中MCP客户端可以连接多个服务器。
MCP客户端:与服务器保持一对一连接的协议客户端。比如,Claude Desktop、Cursor或希望通过MCP访问数据的AI工具。
MCP Server:通过标准化的MCP暴露特定功能的轻量级程序。
本地数据源:MCP Server可以安全访问的计算机文件、数据库和服务。
远程服务:MCP Server可以连接的通过互联网访问的外部系统(例如,通过API)。
在上图所示的架构中,我们发现Cursor扮演的角色就是MCP客户端(MCP Client)。现在我们要做的就是找到一个MCP Server(MCP服务器)实现特定的功能。
MCP资源网站
1.MCP官网
MCP官网如图所示,介绍了MCP的架构、服务端SDK和集成策略,以及一些实例程序和教学资源等。如果你感兴趣,那么可以去看一下。这对于你之后自己开发MCP Server是非常有帮助的。
2.Smithery
Smithery是一个MCP Server的资源网站,如图所示。在这个网站上,我们可以看到社区成员都在用的MCP Server。你也可以搜索你想要的MCP Server。
3.cursor.directory
我们在介绍Cursor的规则时,提到过cursor.directory。这个网站不仅提供了Cursor的规则,还有MCP Server资源。大家可以自行查看一下。这里就不赘述了。
提高Cursor开发效率技巧
快速迭代开发是提高开发效率的重要一步。开发者可以先让Cursor生成框架代码,然后逐步完善细节。在这个过程中,要及时验证生成的代码片段,并根据实际效果快速调整提示词,形成高效的开发节奏。
代码复用与管理同样重要。建议团队收集和维护高质量的提示词模板,建立常用的代码片段库,并整理项目最佳实践案例。这样可以避免重复工作,提高开发效率。
智能工具的整合也能大幅提高效率。将Cursor与版本控制系统、代码检查工具及自动化测试框架结合使用,可以构建更完整的开发流程。
提示词的优化策略直接影响开发效率。在与Cursor交互时,使用清晰的结构化描述内容,提供必要的上下文,并指定具体的输出要求,可以大大提高Cursor的响应准确度。
开发流程的优化必不可少。团队需要制定标准化的Cursor使用流程,建立有效的代码审查和反馈机制,并在实践中持续总结和改进工作方法。
通过这些技巧和方法,我们可以更高效地利用Cursor,在保证代码质量的同时提高开发效率。关键的是要建立系统化的工作方法,并在实践中不断优化和改进。
避免过渡依赖Cursor
过度依赖Cursor可能导致编程能力退化和代码质量下降。为了避免出现这种情况,开发者应该注意以下几个方面。
(1)理解代码:开发者需要深入理解Cursor生成的代码,包括其实现逻辑、每个函数和模块的作用,以及是否符合最佳实践。不能简单地复制和粘贴,而要透彻地理解代码的工作原理。
(2)主动改进:基于对代码的理解,开发者应该主动优化代码结构,使其更符合项目需求。这包括改进命名规范、完善注释说明,以及消除可能存在的代码冗余。
(3)提升技能:要将Cursor视为学习的助手而非替代品。通过研究Cursor提供的解决方案,开发者要学习新的编程思路和方法,同时持续积累自己的编程经验和技术知识。
总的来说,有效使用Cursor需要把握以下关键点:在使用方面,我们要将Cursor视为助手而非完全依赖的工具,要具有独立思考能力和判断能力,并持续提升自身的技术水平。在质量保障方面,我们要建立完整的代码审查机制,做好测试和性能优化,同时注重安全性和可维护性。此外,我们还要持续改进工作方式,根据实际需求调整使用方法,并与团队成员分享最佳实践经验。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓