1.在柠檬水摊上,每一杯柠檬水的售价为 5 美元。
顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
#include <bits/stdc++.h>
using namespace std;
bool find(vector<int>& bills)
{
int five=0;
int ten=0;
int twenty=0;
for(int n:bills)
{
if(n==5)
{
five++;
}
if(n==10)
{
if(five==0)
{
return false;
}
else
{
five--;
ten++;
}
}
if(n==20)
{
if(ten>0&&five>0)
{
ten--;
five--;
twenty++;
}
else if(five>=3)
{
five-=3;
twenty++;
}
else
return false;
}
}
return true;
}
int main()
{
vector<int> num={5,5,10,10,20};
cout<<((find(num)==1)?"True":"False");
return 0;
}
思路:对于这道题我们只需要维护三种金额的数量,5,10和20。
有如下三种情况:
情况一:账单是5,直接收下。
情况二:账单是10,消耗一个5,增加一个10。
情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5。
此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。
而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。
账单是20的情况,为什么要优先消耗一个10和一个5呢?
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。
2.假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。
请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
#include <bits/stdc++.h>
using namespace std;
static bool cmp(const vector<int>& a,const vector<int>& b)
{
if(a[0]==b[0])
return a[1]<b[1];
return a[0]>b[0];
}
vector<vector<int>> find(vector<vector<int>>& people)
{
sort(people.begin(),people.end(),cmp);
vector<vector<int>> queue;
for(int i=0;i<people.size();i++)
{
int postion=people[i][1];
queue.insert(queue.begin()+postion,people[i]);
}
return queue;
}
int main()
{
vector<vector<int>> queue={{7,0},{4,4},{7,1},{5,0},{6,1},{5,2}};
vector<vector<int>> t=find(queue);
for(const auto& n:t)
{
for(int m:n)
{
cout<<m<<" ";
}
cout<<endl;
}
return 0;
}
思路:本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。对于本题如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
2.在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。
一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。
给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
#include <bits/stdc++.h>
using namespace std;
bool cmp(const vector<int>&a,const vector<int>& b)
{
return a[0]<b[0];
}
int find(vector<vector<int>>& point)
{
if(point.size()==0)
return 0;
sort(point.begin(),point.end(),cmp);
int result=1;
for(int i=1;i<point.size();i++)
{
if(point[i][0]>point[i-1][1])
{
result++;
}
else
point[i][1]=min(point[i-1][1],point[i][1]);
}
return result;
}
int main()
{
vector<vector<int>> point={{1,2},{3,6},{7,12},{4,8},{10,16}};
int t=find(point);
cout<<t;
return 0;
}
思路:局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。
为了让气球尽可能的重叠,需要对数组进行排序。既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭。
可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。