柠檬水找零 用最少数量的箭引爆气球

1.在柠檬水摊上,每一杯柠檬水的售价为 5 美元。

顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。

注意,一开始你手头没有任何零钱。

如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

#include <bits/stdc++.h>
using namespace std;
bool find(vector<int>& bills)
{
    int five=0;
    int ten=0;
    int twenty=0;
    for(int n:bills)
    {
        if(n==5)
        {
            five++;
        }
        if(n==10)
        {
            if(five==0)
            {
                return false;
            }
            else
            {
                five--;
                ten++;
            }
        }
        if(n==20)
        {
            if(ten>0&&five>0)
            {
                ten--;
                five--;
                twenty++;
            }
            else if(five>=3)
            {
                five-=3;
                twenty++;
            }
            else
            return false;
        }
    }
    return true;
 } 
 int main()
 {
     vector<int> num={5,5,10,10,20};
     cout<<((find(num)==1)?"True":"False");
     return 0;
 }

思路:对于这道题我们只需要维护三种金额的数量,5,10和20。

有如下三种情况:

情况一:账单是5,直接收下。

情况二:账单是10,消耗一个5,增加一个10。

情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5。

此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。

而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。

账单是20的情况,为什么要优先消耗一个10和一个5呢?

因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!

所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。

2.假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

#include <bits/stdc++.h>
using namespace std;
static bool cmp(const vector<int>& a,const vector<int>& b)
{
    if(a[0]==b[0])
    return a[1]<b[1];
    return a[0]>b[0];
}
vector<vector<int>> find(vector<vector<int>>& people)
{
    sort(people.begin(),people.end(),cmp);
    vector<vector<int>> queue;
    for(int i=0;i<people.size();i++)
    {
        int postion=people[i][1];
        queue.insert(queue.begin()+postion,people[i]);
    }
    return queue;
}
int main()
{
    vector<vector<int>> queue={{7,0},{4,4},{7,1},{5,0},{6,1},{5,2}};
    vector<vector<int>> t=find(queue);
    for(const auto& n:t)
    {
        for(int m:n)
        {
            cout<<m<<" ";
        }
        cout<<endl;
    }
    return 0;
}
 

思路:本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。对于本题如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!

按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

2.在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足  xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。

#include <bits/stdc++.h>
using namespace std;
bool cmp(const vector<int>&a,const vector<int>& b)
{
    return a[0]<b[0];
 } 
 int find(vector<vector<int>>& point)
 {
     if(point.size()==0)
        return 0;
    sort(point.begin(),point.end(),cmp);
     int result=1;
     for(int i=1;i<point.size();i++)
     {
         if(point[i][0]>point[i-1][1])
         {
             result++;
         }
         else
         point[i][1]=min(point[i-1][1],point[i][1]);
     }
     return result;
 }
 int main()
 {
     vector<vector<int>> point={{1,2},{3,6},{7,12},{4,8},{10,16}};
     int t=find(point);
     cout<<t;
     return 0;
 }
 

思路:局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。

为了让气球尽可能的重叠,需要对数组进行排序。既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭

可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
 

**Python柠檬水找零问题** 这是一个经典的算法题,题目描述如下: 假设你正在经营一家柠檬水摊位,每个柠檬水的价格都是固定的5元。顾客们会用面值为5元、10元或20元的纸币来购买柠檬水。 你需要保证每次都能给顾客正确的找零,并且初始时你没有任何零钱可以用来找零。如果能够成功地为每一位顾客找到合适的零钱,则返回 `True`;如果有任何一位顾客无法得到正确的找零,则返回 `False`。 我们来看一下具体的解法步骤: ### 解法思路 我们可以维护两个变量分别记录手头上拥有的5元钞票的数量 (`five_count`) 和 10元钞票的数量 (`ten_count`) ,因为只需要考虑这两种情况即可完成所有的找零任务(注意:不存在需要找回40的情况)。每当遇到一个新的支付请求时,就依据当前收到的钱以及现有的零钱情况进行处理。 - 如果客户给出的是 **5元** 纸币——直接收下并增加手中相应的金额数目; - 若是收到 **10元** 的话,那么就要检查是否能从已有的现金里拿出一张 **5元** 来作为找头; - 当收到 **20元** 付款的时候有三种可能性: - 使用三张五元; - 或者是一张十元加一张五元组合起来凑齐这十五块差价; 最后遍历一遍所有交易后仍然保持了足够的小费来做之后可能出现的新订单的找零工作即表示此次模拟售卖过程可行。 下面是对应的 Python 实现代码示例: ```python def lemonade_change(bills): five = ten = 0 for bill in bills: if bill == 5: five += 1 elif bill == 10: # 检查是否有足够数量的5元来找零 if not five: return False else: five -= 1 ten += 1 else: # 这里代表bill==20的情形 if five and ten >= 1: five -= 1 ten -= 1 elif five >= 3: five -= 3 else: return False return True # 测试数据点 print(lemonade_change([5, 5, 5, 10, 20])) # 输出应为 True ``` 希望这个解答对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值