题目1:860 柠檬水找零
题目链接:860 柠檬水找零
题意
一杯柠檬水5美元,每位顾客只买一杯柠檬水,支付5美玉,10美元,20美元,必须正确找零
开始时并没有零钱 若可以正确找零,则返回true,反之返回false
贪心策略
尽可能保留5美元的零钱,5更万能(既能对10找零,又能对20找零) 优先使用10进行找零
代码
class Solution {
public:
bool lemonadeChange(vector<int>& bills) {
if(bills[0]!=5) return false;
int nums5 = 0;
int nums10 = 0;
int nums20 = 0;
for(int i=0;i<bills.size();i++){
if(bills[i]==5) nums5 += 5;
if(bills[i]==10){
if(nums5!=0){
nums5 -= 5;
nums10 += 10;
}
else return false;
}
if(bills[i]==20){
if(nums10!=0 && nums5!=0){
nums10 -= 10;
nums5 -= 5;
}
else if(nums5>=15){
nums5 -= 15;
}
else return false;
}
}
return true;
}
};
- 时间复杂度: O(n)
- 空间复杂度: O(1)
题目2:406 根据身高重建队列
题目链接:406 根据身高重建队列
题意
people[i]=[hi,ki] 表示第i个人的身高是hi,前面有ki个身高大于等于hi的人,按正确顺序重组队列
贪心策略
先确定一个维度,先比较h的维度,按照h从大到小排序,然后再比较k的维度 按照k从小到大往前插入
数组
代码
class Solution {
public:
static bool cmp(vector<int>& a,vector<int>& b){
if(a[0]==b[0]) return a[1]<b[1];//升序排序
return a[0]>b[0];//降序排序
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
vector<vector<int>> queue;
//身高按照降序排序,从大到小排序
sort(people.begin(),people.end(),cmp);
//根据k插入到队列前面 注意是插入到队列哦,不是people
for(int i=0;i<people.size();i++) queue.insert(queue.begin()+people[i][1],people[i]);
return queue;
}
};
- 时间复杂度:O(nlog n + n^2)
- 空间复杂度:O(n)
!!!注意!!!
使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。
所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n^2)了,甚至可能拷贝好几次,就不止O(n^2)了。
链表
class Solution {
public:
static bool cmp(vector<int>& a,vector<int>& b){
if(a[0]==b[0]) return a[1]<b[1];//升序排序
return a[0]>b[0];//降序排序
}
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
list<vector<int>> que;
//身高按照降序排序,从大到小排序
sort(people.begin(),people.end(),cmp);
//根据k插入到队列前面 注意是插入到队列哦,不是people
for(int i=0;i<people.size();i++){
int position = people[i][1];
std::list<vector<int>>::iterator it=que.begin();
while(position--){
it++;
}
que.insert(it,people[i]);
}
return vector<vector<int>>(que.begin(),que.end());
}
};
- 时间复杂度:O(nlog n + n^2)
- 空间复杂度:O(n)
题目3:452 用最少数量的箭引爆气球
题目链接:452 用最少数量的箭引爆气球
题意
points[i]=[xstart,xend]表示水平直径在xstart和xend之间的气球,y坐标未知
一支箭可以从垂直x轴的任意位置x处射出一直前进,若xstart<=x<=xend,气球会被引爆,求最小弓箭数
贪心策略
重叠区间的气球用1个箭射中,箭的数量最少
代码
class Solution {
public:
static bool cmp(vector<int>& a, vector<int>& b){
//左边界升序
return a[0]<b[0];
}
int findMinArrowShots(vector<vector<int>>& points) {
//对数组的左边界升序排序
sort(points.begin(),points.end(),cmp);
//收集弓箭数
int result = 1;
for(int i=1;i<points.size();i++){
//两气球不重叠
if(points[i][0]>points[i-1][1]) result++;
//两气球重叠
else{
//判断第三个气球,更新右边界
points[i][1] = min(points[i][1],points[i-1][1]);
}
}
return result;
}
};
- 时间复杂度:O(nlog n),因为有一个快排
- 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间